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No truth label for individual events,  
can only constrain !αS

I t ’s  aga inst  phys ica l  law to  annota te  our  data !

Pdata = αSPS + αBPB

Dijet invariant mass

dPn
data = |MS + MB |2 dp1dp2 . . . dpn

MSMB * +MBMS *
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10−18m 10−15m 10−6m 100m

Experimental particle physics workflow

This is what happens in the experiment

This is what we want t know

O(10) O(103) O(1010)
Dimensions

Monte  Car lo  S imula t ion



~40 quadrillion collisions recorded at LHC

LumiPublicResults 

CMSOfflineComputingResults 
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Why simulation ?

pp collisions up to 
production of stable 

particles

detector response 
simulation with GEANT4

Energy deposits→digital 
signals→reconstructed by 
the reconstruction software

Fully detailed simulation is computationally intensive 

• Geant4 enables accurate simulation : 
 - Simulation problem is defined by a set of components / input 
parameters : geometry of the detector, materials, physics…  
 - MC method is used to solve particle transport equations given the input 
parameters  
 - Based largely on first principles, in some cases tuned to test beam data 

• Geant4 is sequential ! 

O(1) trillion simulated events 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Unsupervised/SSL 
• No labels, completely data driven 

 

Fully supervised 
• Requires truth labels 
• Only possible using simulation 
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Why simulation ?

pp collisions up to 
production of stable 

particles

detector response 
simulation with GEANT4

Energy deposits→digital 
signals→reconstructed by 
the reconstruction software

Fully detailed simulation is computationally intensive 

• Geant4 enables accurate simulation : 
 - Simulation problem is defined by a set of components / input 
parameters : geometry of the detector, materials, physics…  
 - MC method is used to solve particle transport equations given the input 
parameters  
 - Based largely on first principles, in some cases tuned to test beam data 

• Geant4 is sequential ! 
We are also very keen 
on using this!

We have a lot of high quality 
simulated data that we want to use

Simulation != test data


Mostly (SM )background 
samples, small signal datasets



Inspire:  
("machine learning" or "deep 
learning" or neural) and (hep-ex 
or hep-ph or hep-th)



arxiv:1407.0558 

5.7σ

mH =
q
2E�1E�2(1– cos ✓�1�2)

<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc="></latexit>

CERN Summer student 2012

https://arxiv.org/pdf/1407.0558.pdf


CERN Summer student 2012
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learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement.

The emergence of deep learning
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded.

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56.

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in  
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS.

Computer vision for neutrino experiments
Loosely inspired by the structure of the visual cortex, CNNs use a strategy  
that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 
in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large 
homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses.

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71.

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image 
classification and object detection.

RNNs for beauty-quark identification
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre-  
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced  

Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson

Analysis
Years of data 
collection

Sensitivity  
without machine  
learning

Sensitivity 
with machine 
learning

Ratio 
of P 
values

Additional 
data  
required

CMS24 
H → γγ

2011–2012 2.2σ,  
P = 0.014

2.7σ, 
P = 0.0035

4.0 51%

ATLAS43 
H → τ+τ−

2011–2012 2.5σ,  
P = 0.0062

3.4σ, 
P = 0.00034

18 85%

ATLAS99 
VH → bb

2011–2012 1.9σ,  
P = 0.029

2.5σ, 
P = 0.0062

4.7 73%

ATLAS41 
VH → bb

2015–2016 2.8σ,  
P = 0.0026

3.0σ, 
P = 0.00135

1.9 15%

CMS100 
VH → bb

2011–2012 1.4σ,  
P = 0.081

2.1σ, 
P = 0.018

4.5 125%

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative figure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%.

4 4  |  N A T U R E  |  V O L  5 6 0  |  2  A U G U S T  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

Nature Review 

We were using ML for discovery  very early on 

https://www.nature.com/articles/s41586-018-0361-2




From Siddhartha’s introduction



FastML:


Pioneering 
AI in the 
physical 
sciences



From Simon. 60 million parameter model

Can we combine 12μs latency and O(100M) parameter models?
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1,800,000,000,000

(1.6% of neurons in your brain) 

175,000,000,000

(0.16% of neurons in your brain) 

GPT-3 GPT-4 



semianalysis 2023 

Train (GPT-4):  
• 2.1525 floating point operations 
• 25,000 A100 GPUs  
• 90-100 days 
• $63 million 
• Trained on 13 trillion tokens

https://www.semianalysis.com/p/gpt-4-architecture-infrastructure


semianalysis 2023 

Train (GPT-4):  
• 2.1525 floating point operations 
• 25,000 A100 GPUs  
• 90-100 days 
• $63 million 
• Trained on 13 trillion tokens

Inference (GPT-4):  
• Multiple clusters of 128 GPUs 
• Model carefully mapped onto hardware

https://www.semianalysis.com/p/gpt-4-architecture-infrastructure




Kaplan et al. (2020)
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Figure �.�: Test loss of a languagemodel vs. the amount
of computation in peta�op/s-day, the data set size in
tokens, that is fragments of words, and the model size
in parameters [Kaplan et al., ����].
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Resources: 128 interconnected GPUs 
Latency :    101 seconds



Resources: 128 interconnected GPUs 
Latency :    10 seconds

Resources: O(10) single chips 
Latency:      1 millionth of a second 
                     5% of internet traffic



GPT-4 

? 
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On-detec tor  ML
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On-detec tor  ML

25 ns

7.5 m

2.2·1011 protons

2,500 bunches 
 1011 protons 

11,000 times/s
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E = mc2



On-detec tor  ML

meV
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MeV
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TeV

𝝼e 𝝼μ 𝝼𝜏

e

μ
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b

Z W

c

?

tHiggs: 
125 GeV

Masses span 9 orders of magnitude!
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On-detec tor  ML







 

https://arxiv.org/pdf/1407.0558.pdf


 

cmsexperiment.web.cern.ch 

We had to collide billions of protons,  
only around 10 signal events were needed to claim discovery!

https://arxiv.org/pdf/1407.0558.pdf
https://cmsexperiment.web.cern.ch/news/using-golden-decay-channel-understand-production-higgs-boson


 

cmsexperiment.web.cern.ch 

We had to collide billions of protons,  
only around 10 signal events were needed to claim discovery!

https://arxiv.org/pdf/1407.0558.pdf
https://cmsexperiment.web.cern.ch/news/using-golden-decay-channel-understand-production-higgs-boson


The  
Standard  

Model
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On-detec tor  ML

O(1) billion collisions per second 
O(1) PB of data per second



Higgs produced 
~1 in a billion collisions! 

Saving all collisions not useful  
(even if we could)! 
 

13 TeV

“Probability” of  
producing a Higgs

“Probability” of  
producing “anything”
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On-detec tor  ML

2 step rate reduction 
(hardware+software)

2 step rate reduction 
(hardware+software)
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2 step rate reduction 
(hardware+software)

Software rate reduction 
(GPU+CPU)

2 step rate reduction 
(hardware+software)

Continous read-out 
(CPU+GPU)
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2 step rate reduction 
(hardware+software)
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data temporarily stored  
in detector electronics for 4 µs 

(frontend buffering limit) 
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 trigger: 
~1000 FPGAs 

Decide which 
event to keep 
within ~4 µs 

Reject >99% of 
collisions!

5% of internet traffic to L1
Data temporarily stored  

in detector electronics for 4 µs 
(frontend buffering limit) 
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 bit: 
Accept = 1 
Reject = 0
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 accept: 
O(100) kHz 

~Tb/s
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
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� Distribute clock and control data

ECOC-11 18 Sept. 6
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 accept: 
O(100) kHz 

~Tb/s

High Level Trigger: 
25’600 CPUs / 400 GPUs 

Latency: 3-400 ms 

Reject further 99%!
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TIER 0: ∞

High Level Trigger:  
Latency 0(100) ms

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HLT accept:  
O(1) kHz 

~Gb/s
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High Level Trigger:  
Latency 0(100) ms

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HLT accept:  
O(1) kHz 

~Gb/s
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High Level Trigger:  
Latency 0(100) ms

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HLT accept:  
O(1) kHz 

~Gb/s

0.0025% of collision events remaining
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To make sure we select “the right” 0.0025%, algorithms must be 

• Fast (get more data through) 
• Accurate (select the right data) 

HIG-19-001 

https://cds.cern.ch/record/2668684?ln=en


Searches for new particles at LHC
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New Physics is produced less 
than 
1 in a trillion (if at all) 
 
Need more data! 13 TeV

“Probability” of  
producing “anything”

New Physics?



High Luminos i ty  LHC

New Physics is produced 1 in a trillion 
• Need more collisions to observe rare processes 

High Luminosity LHC 
• ⨉10 data size 
• ⨉3 collisions/s 

 
 
 
 

LHC (TODAY!) MAJOR UPGRADE HL-LHC

Run 3 Run 4+5

2022 - 2025 2026 - 2028 2029 - 2038
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High Luminos i ty  LHC

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

78 vertices 
(average 60)

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

200 vertices  
(average 140)

LHC

Run 3 Run 4+5

6 cm



CMS HGCAL TDR

Maintain physics acceptance → better detectors 

CMS High Granularity (endcap) calorimeter 
•X20 times more readout channels (6.5 million!!) 

More collisions  
More readout channels

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC Level-1 :

Complete re-design of Level-1 
• Charged particle tracks (6.4 Tb/s, 200 FPGAs) 

 
 
 
 Challenges

• Price to pay for high luminosity  
— extreme pileup  
‣ At HL-LHC, expect on average  
200 overlapping pp collisions 

• Particularly challenging for  
trigger system 
‣ Inclusion of tracking central to 

mitigating effects of pileup

!4

ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT

19

ATLAS:  3 physical levels CMS:  2 physical levels

Wesley Smith, U. Wisconsin, October 3, 2013 ECFA – HL-LHC: – Trigger & DAQ -  3 

Journey to HL-LHC 
2012-2013 run: 

•  Lumi = 7 x 1033, PU = 30, E = 7 TeV, 50 nsec bunch spacing 
•  2012 ATLAS, CMS operating: 

•  L1 Accept ≤ 100 kHz,  
•  Latency ≤ 2.5 (AT), 4 µsec (CM) 
•  HLT Accept ≤ 1 kHz 

Where ATLAS & CMS will be: 
•  Lumi = 5 x 1034 

•  <PU> = 140, Peak PU = 192 (increase × 6)  
•  E = 14 TeV (increase × 2)  
•  25 nsec bunch spacing (reduce × 2) 
•  Integrated Luminosity > 250 fb-1 per year  

Need to establish scenario for L1 Accept, Latency, HLT 
Accept & new trigger “features” (e.g. tracking trigger) 

Front  end pipelines 

Readout buffers 

Processor farms 
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Fast ML at the Edge - Sioni Summers8 March 2024

CMS Detector Upgrade 2: HGCal
• High granularity calorimeter: silicon sampling calorimeter for the endcaps 

• 6.5 million channels in 50 layers 

- Very fine transverse and longitudinal segmentation  

• Dedicated ASIC to prepare data for trigger reconstruction - more later 

• Trigger backend comprises around 200 FPGAs 

- Reconstructing 3D clusters: 4 Tb/s clusters sent downstream

8

arXiv:1708.08234CMS-TDR-019
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a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable
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segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.
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This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable
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ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT
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a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable
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a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable
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motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).
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segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
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The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
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ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information
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• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT
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• w/o tracking, L1 output for PU=200 
is ~4000 kHz

Nanosecond ML inference on FPGAs!

40 billion inferences/s during HL-LHC


( ≈ all inferences at Google) 
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collision rate to data rate that can be 
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• w/o tracking, L1 output for PU=200 
is ~4000 kHz

Nanosecond ML inference on FPGAs!

40 billion inferences/s during HL-LHC


( ≈ all inferences at Google) 

HEP developed 
libraries for fast ML 
on FPGAs 
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Real-time AI for HL-LHC and beyond (SNSF SG Proposal, T. K. Årrestad) 7

identifying instances from unknown categories, such as potential New Physics processes.

Each of these projects is substantial enough to be the subject of a PhD thesis. I propose allocating

one student to each project, under the supervision of the PI and assisted by a Postdoctoral

researcher. In the sections that follow, I will discuss the specifics of both projects.

2. Section b: Methodology

3. WP1: Towards end-to-end smart triggering for HL-LHC and beyond

3.1. The Level-1 hardware trigger

12.5 µs

PARTICLE 
FLOW 

(66 FPGAs) 

GLOBAL 
TRIGGER 
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Accept / Reject

MUON CHAMBERS 
(96 FPGAs)

CALORIMETRY 
(370 FPGAs)

End-to-end reconstruction model

Downstream 
Task

Latent representation

Downstream 
Task
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Downstream 
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CHARGED PARTICLE 
TRACKING 
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Accept / Reject

63 Tb/s

Current HL-LHC design This project

MUON CHAMBERS 
PRE-PROCESSING

CALORIMETER 
PRE-PROCESSING

TRACKING 
PRE-PROCESSING

Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,

Foundation-model based trigger
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• Latency (resource parallelism)

resource parallelism



Why FPGAs?

• Throughput (pipeline parallelism)

pipeline  

parallelism



Latency, latency, latency (cannot do much on a GPU IN 4 µs) 
•Can work on different parts of problem, different data simultaneously 
•Latency strictly limited by detector frontend buffer 

Latency deterministic 
•CPU/GPU processing randomness, FPGAs repeatable predictable latency 

High bandwidth 
•L1T processes 5% of total internet traffic, dissipate heat of ~7W/cm2

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

Work on 18 events  
simultaneously!
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TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA 
 

  
HLS project: 

Xilinx Vivado HLS, Intel Quartus HLS,  
Mentor Catapult HLS

pip install hls4ml 

pip install conifer

 Vitis 

https://github.com/fastmachinelearning/hls4ml 
https://fastmachinelearning.org/hls4ml/

KERAS / PyTorch / ONNX

TensorFlow DF / scikit-learn / XGBoost

Vivado / Vitis / Intel Quartus / 
IntelOne API / Catapult

https://github.com/fastmachinelearning/hls4ml


Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

https://arxiv.org/abs/1804.06913
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Idea l ly Real i t y

• Quantization 

• Pruning 

• Parallelisation 

• Knowledge distillation



?
~700 GB 

~350 GB

→

→



Quantization

Floating point 32:  
4B numbers in [-3.4e38, +3.4e38] 



Quantization

Quantising: 
int8 28=256 numbers in [-128,127] 

  xq = Clip(Round(
xf

scale
))

https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
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FP 32 FP 32



Weights  Layer  1 Weights  Layer  2

FP 32 FP 32< 4,0 > < 4,0 >

Fixed  po in t



Weights  Layer  1 Weights  Layer  2

FP 32 FP 32< 4,0 > < 4,0 >

Fixed  po in t

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: quantization
• In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent 
fractional values

• But we have to make sure we’ve used the correct data types!
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ReLU ReLU ReLU Softmax

Forward  pass  →

←  Back  propagat ion

Quant iza t ion-aware  t ra in ing

Nature Machine Intelligence 3 (2021)

+

https://www.nature.com/articles/s42256-021-00356-5
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https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: compression

• DSPs (used for multiplication) are often 
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision

Fully parallelized 
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

Pruning
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Original image 

Hooker et al. (2021)

From Brian Bartoldson



Diffenderfer, Bartoldson, et al. (2021)

There  ex is ts  a  opt imal  network  WITHIN each  network  ( lo t tery  t i cket )   
Uncover  i t  through pruning!

Pruned
Unpruned

Bet ter !

From Brian Bartoldson



Floating point model Compressed model 
(Quantised + Pruned) Firmware design

hls4ml tutorial 

Quantised input data

https://github.com/fastmachinelearning/hls4ml-tutorial/tree/main
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Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12
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-no timing cut applied-

Pileup hits
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-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+
200 vertices
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ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+

No t iming  cut 90  ps  t ime window

200 vertices

BUT:  Cannot  read  out  a l l  these  channels  
fas t  enough for  L1  to  t r igger !
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Var ia t ional  Autoencoder

Encoder architecture

4

ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
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AEs for compression also at LHCb! 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
https://sse-ml-lhcb.gitlab.io/
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https://indico.cern.ch/event/1283970/contributions/5550653/attachments/2722805/4730907/fkeras-fastml23.pdf
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Figure 2. The inverse of the average false positive rate (FPR) at a fixed true positive
rate (TPR) of 80% over k = 5 folds of the data for N 2 {8, 16, 32} constituents per jet.
This TPR was chosen to maximize the e�ciency of identifying a potential signal. The
size of the MLP is constrained by requiring it to be synthesizable in hls4ml. Therefore,
the number of parameters per consecutive layer is limited and the MLP performance
decreases from 16 to 32 constituents. This is not a factor for the other networks that
use a 2D representation of the data. The models are quantized to 8 bits.

The performance of the models described above is shown in Table 1. The uncertainty

on the AUC and FPR was studied using k-fold cross validation with k = 5. The training

dataset is split into 5 subsamples such that 1/5 is used for validation and the remaining

4/5 is used for training. The uncertainties on the figures of merit, AUC and FPR,

are quantified by the standard deviation across the 5 folds and found to be O(0.1)%.

However, the uncertainties due to random initalizations of model parameters are not

quantified, but they would not impact the qualitative statements implied by our results.

Figure 2 shows the inverse of the average FPR across classes at 80% TPR for each

model as a function of the number of constituents. The models whose performance is

shown in this figure are not the floating point models, but their weights and activations

are quantized to 8 bits. The details of this quantization process are explained in Section 4.

For now, notice that when the number of constituents is small, the architectures under

study perform very similarly in terms of tagging accuracy. However, when increasing the

input size up to 32 constituents, the DS and IN perform significantly better than MLPs.

As the number of input constituents increases from 8 to 32, the IN and the DS have a

higher inverse mistagging rate than the MLP, across all classes.
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Table 2. Average latency, initiation interval (II), and resource consumption for the
MLP, DS, and IN models quantized to a bit width of 4, 6, and 8, trained on jet data
with a maximum of 8 constituents. The cc next to the latency and II represents the
number of clock cycles on the FPGA. The numbers in parentheses next to the FPGA
resource values correspond to the used percentage of the given resource. The accuracy
ratio between the models presented in this table and the quantized models before FPGA
implementation are all above 0.9.

FPGA: Xilinx Virtex UltraScale+ VU13P

Architecture Precision RF Latency [ns] (cc) II [ns] (cc) DSP LUT FF BRAM18

MLP

4 1 95 (19) 5 (1) 101 (0.8%) 235,080 (13.6%) 90,150 (2.6%) 4 (0.1%)

6 1 95 (19) 5 (1) 292 (2.4%) 313,371 (18.3%) 114,712 (3.3%) 4 (0.1%)

8 1 105 (21) 5 (1) 262 (2.1%) 155,080 (7.6%) 25,714 (0.6%) 4 (0.1%)

DS

4 2 95 (19) 15 (3) 101 (0.8%) 235,359 (13.6%) 90,190 (2.6%) 4 (0.1%)

6 2 95 (19) 15 (3) 292 (2.4%) 313,230 (18.1%) 114,745 (3.3%) 4 (0.1%)

8 2 95 (19) 15 (3) 626 (5.1%) 386,294 (22.3%) 121,424 (3.5%) 4 (0.1%)

IN

4 2 150 (30) 10 (2) 5 (0.0%) 276,720 (16.0%) 124,354 (3.6%) 12 (0.2%)

6 2 155 (31) 15 (3) 673 (5.5%) 387,625 (22.4%) 161,685 (4.7%) 12 (0.2%)

8 2 160 (32) 15 (3) 2,191 (17.8%) 472,140 (27.3%) 191,802 (5.5%) 12 (0.2%)

Table 3. Number of jet constituents, reuse factor, latency, initialization interval (II)
and resource consumption for the models quantized to 8 bits. The cc next to the
latency and II represents the number of clock cycles on the FPGA. The numbers in
parentheses next to the FPGA resource values correspond to the used percentage of
the given resource. The accuracy ratio between the models presented in this table and
the quantized models before FPGA implementation are all above 0.9.

FPGA: Xilinx Virtex UltraScale+ VU13P

Architecture Constituents RF Latency [ns] (cc) II [ns] (cc) DSP LUT FF BRAM18

MLP

8 1 105 (21) 5 (1) 262 (2.1%) 155,080 (9.0%) 25,714 (0.7%) 4 (0.1%)

16 1 100 (20) 5 (1) 226 (1.8%) 146,515 (8.5%) 31,426 (0.9%) 4 (0.1%)

32a 1 105 (21) 5 (1) 262 (2.1%) 155,080 (7.2%) 25,714 (0.7%) 4 (0.1%)

DS

8 2 95 (19) 15 (3) 626 (5.1%) 386,294 (22.3%) 121,424 (3.5%) 4 (0.1%)

16 4 115 (23) 15 (3) 555 (4.5%) 747,374 (43.2%) 238,798 (6.9%) 4 (0.1%)

32a 8 130 (26) 10 (2) 434 (3.5%) 903,284 (52.3%) 358,754 (10.4%) 4 (0.1%)

IN

8 2 160 (32) 15 (3) 2,191 (17.8%) 472,140 (27.3%) 191,802 (5.5%) 12 (0.2%)

16 4 180 (36) 15 (3) 5,362 (43.6%) 1,387,923 (80.3%) 594,039 (17.2%) 52 (1.9%)

32a 8 205 (41) 15 (3) 2,120 (17.3%) 1,162,104 (67.3%) 761,061 (22.0%) 132 (2.5%)

a Pruning to a sparsity of 50% is applied to the 32-constituent IN model such that it can fit within the resource constraints of the FPGA. For consistency, the

same pruning sparsity is applied to the 32-constituent MLP and DS models.

A fully parallel implementation for all MLPs by setting the RF in hls4ml to 1, such

that each network multiplication is distributed across all the resources. For the DS and

IN models, the RF 2 {2, 4, 8} for N 2 {8, 16, 32} constituents, respectively, due to the

limited amount of hardware resources. Increasing the RF reduces the model resource

consumption at the cost of increasing its latency and throughput. Equally important for

the throughput is the initiation interval (II), which represents how many clock cycles it

takes before the network is ready to receive new inputs. The II is higher for the DS and

IN models. This can be partially compensated by running several instances of the model

in parallel, but given their size, this might be infeasible. Additionally, an event contains

multiple jets and thus deploying several versions of the same model to perform inference

in parallel is necessary. Assuming 6 FPGA boards are used and 10 jets are classified per

sequentially event, II ⇡ 15 ns consistent with Table 3.
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CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Look at data rather than defining signal hypothesis a priori 
• Can we “classify” objects/events? 
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Semantic segmentation for autonomous vehicles 
Seizure Predicting Brain Implant 
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N. Ghielmetti et al. 

NN accelerator for quantum control 
• Putting control in cryostat  

(e.g optimal pulse parameters) 

D Xu et al. 

Other examples 
• For fusion science phase/mode monitoring  
• Crystal structure detection  
• Triggering in DUNE  
• Accelerator control  
• Magnet Quench Detection 
• MLPerf tinyML benchmarking  
• Food contamination detection  
• etc….  

 

W. Lemaire et al. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://arxiv.org/abs/2206.11791
https://ieeexplore.ieee.org/document/9181293
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf


Real-time AI for HL-LHC and beyond (SNSF SG Proposal, T. K. Årrestad) 7

identifying instances from unknown categories, such as potential New Physics processes.

Each of these projects is substantial enough to be the subject of a PhD thesis. I propose allocating

one student to each project, under the supervision of the PI and assisted by a Postdoctoral

researcher. In the sections that follow, I will discuss the specifics of both projects.

2. Section b: Methodology

3. WP1: Towards end-to-end smart triggering for HL-LHC and beyond

3.1. The Level-1 hardware trigger
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Figure 3. Left: Diagram of the CMS L1 hardware trigger as foreseen for HL-LHC. The system

is located in a radiation shielded cavern right next to the CMS detector and consists of hundreds

of FPGAs mounted on custom boards. Each subsystem; calorimeters (orange), tracking detectors

(green) and muon chambers (light blue), are first reconstructed locally on hundreds of FPGAs.

This information is then sent forward to a system responsible of correlating the information from

all subdetectors using the Particle Flow algorithm (yellow). Finally, the global trigger receives all

trigger information for the final decision (pink) [8]. Right: An illustration of the final AI-powered

end-to-end reconstruction design proposed in WP1.

The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,
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The CMS Level-1 trigger is designed in a hierarchical way, illustrated in Figure 3. Information

from each subdetector is first processed and reconstructed locally. For instance for the calorimeter,
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266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable
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