Foundation models at the edge for particle physics

HIGHZURICH

It's against physical law to annotate our data!

 $M_S M_B * + M_B M_S *$

Dijet invariant mass

Monte Carlo Simulation

$O(10^{10})$

We have a lot of high quality simulated data that we want to use

We are also very keen on using this!

We have a lot of high quality simulated data that we want to use

We are also very keen on using this!

Inspire: ("machine learning" or "deep learning" or neural) and (hep-ex or hep-ph or hep-th)

ROOT - An Object-Oriented Data Analysis Framework.

Authors: René Brun and Fons Rademakers Proceedings AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See also https://root.cern/, Date: 11th April 1997 doi: 10.1016/S0168-9002(97)00048-X www: https://root.cern/download/lj.ps.gz Note: Paper published in the Linux Journal, Issue 51, July 1998. Selected Papers: 457 Total Papers: 457 Year: 2023

CERN Summer student 2012

tivity ut machine ng	Sensitivity with machine learning	Ratio of <i>P</i> values	Additional data required	
.014	2.7 σ , P = 0.0035	4.0	51%	
.0062	3.4 σ , P = 0.00034	18	85%	
.029	2.5 σ , P = 0.0062	4.7	73%	
.0026	3.0 <i>σ</i> , <i>P</i> = 0.00135	1.9	15%	
.081	2.1 <i>σ</i> , <i>P</i> = 0.018	4.5	125%	

We were using ML for discovery very early on

11–15 Mar 2024 Charles B. Wang Center, Stony Brook University US/Eastern timezone

Now happening:

(Theatre) 08:45 - 09:15

Overview

Scientific Programme

Info for presenters

Timetable

Contribution List

Registration

Accommodations

Travel Information

L About Stony Brook and Long Island

Important dates

Getting Around and Parking, Internet access, Venue and

- Registration
- Food and Drinks
- Things to Do near SBU
- What to do in New York City

ACAT Organization

22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research

The 22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2024 will take place between Monday 11th and Friday, 15th March, 2024 at the Stony Brook University, Stony Brook, Long Island NY, USA.

The 22nd edition of ACAT will — once again — bring together computational experts from a wide range of disciplines, including particle-, nuclear-, astro-, and accelerator-physics as well as high performance computing. Through this unique forum, we will explore the areas where these disciplines overlap with computer science, fostering the exchange of ideas related to cutting-edge computing, data-analysis, and theoretical-calculation technologies.

Our Theme will be **Foundation Models for Physics - Nexus of Computation and Physics through Embracing the Era of Foundation Models:** The 2024 ACAT workshop invites the vanguard of computational and physics experts to delve into the transformative potential of foundation models. As the intersection between physics and computational realms deepens, these advanced models, underpinned by colossal datasets and capable of generating nuanced outputs, are redefining the research spectrum and increasingly reshaping the way researchers approach complex problems, simulations, and data analyses. As we chart this new territory, we'll address challenges and opportunities encompassing integration into computational ecosystems, innovative data practices, training nuances, infrastructure evolution, uncertainty metrics, ethical dimensions, and collaborative vistas across disciplines.

Enter your search term	٩
Apolysis Techniques in	

Selected Papers: 457 Total Papers: 457 Year: 2023

Selected Papers: 100 Total Papers: 100 Year: 2024

Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models Philip Harris, Michael Kagan, Jeffrey Krupa, Benedikt Maier, Nathaniel Woodward (Mar 11, 2024) e-Print: 2403.07066 [hep-ph]

🔁 pdf 📑 cite 🔂 claim

a reference search

OmniJet-α: The first cross-task foundation model for particle physics Joschka Birk, Anna Hallin, Gregor Kasieczka (Mar 8, 2024) e-Print: 2403.05618 [hep-ph]

🔓 pdf 🔄 cite 📑 claim

a reference search

AI + Physics: A new frontier?

Many fields within AI4Science are pushing the frontiers of AI... what about physics?

Reliable inference with complex forward models

- Sampling under complex symmetries and exactness guarantees (e.g., in lattice QFT)
- Statistical anomaly detection

...

Highly structured models/data-generating processes

From Siddhartha's introduction

Framing: Kyle Cranmer

Extremely fast real-time inference

High Energy Physics Build tools to process LHC collisions occurring 40 million times per second data in real-time using AI. Read More >

(From A3D3 website)

FastML:

Pioneering Al in the physical sciences

From Simon. 60 million parameter model

Can we combine 12 μ s latency and O(100M) parameter models?

T1037 / 6vr4 90.7 GDT (RNA polymerase domain) **T1049 / 6y4f** 93.3 GDT (adhesin tip)

Experimental result

Computational prediction

sequence—the structure prediction component of the 'protein folding problem'⁸—has been an important open research problem for more than 50 years⁹. Despite recent

T1037 / 6vr4 90.7 GDT (RNA polymerase domain) T1049 / 6y4f 93.3 GDT (adhesin tip)

Experimental result

Computational prediction

sequence-the structure prediction component of the 'protein folding problem'⁸-has been an important open research problem for more than 50 years⁹. Despite recent

GPT-3

175,000,000,000 (0.16% of neurons in your brain)

1,800,000,000,000 (1.6% of neurons in your brain)

semianalysis 2023

<u> Train (GPT-4):</u>

- 2.15²⁵ floating point operations
- 25,000 A100 GPUs
- 90-100 days
- \$63 million
- Trained on 13 trillion tokens

semianalysis 2023

<u>Train (GPT-4):</u>

- 2.15²⁵ floating point operations
- 25,000 A100 GPUs
- 90-100 days
- \$63 million
- Trained on 13 trillion tokens

IEEE style reference please: @ARTICLE{9447722,

author={Guglielmo, Giuseppe Di and Fahim, Farah and Herwig, Christian and Valentin, Manuel Blanco and Duarte, Javier and Gingu, Cristian and Harris, Philip and Hirschauer, James and Kwok, Martin and Loncar, Vladimir and Luo, Yingyi and Miranda, Llovizna and Ngadiuba, Jennifer and Noonan, Daniel and Ogrenci-Memik, Seda and Pierini, Maurizio and Summers, Sioni and Tran, Nhan},

journal={IEEE Transactions on Nuclear Science},

title={A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC},

year={2021}, volume={68}, number={8}. pages={2179-2186}, doi={10.1109/TNS.2021.3087100}}

ChatGPT

Here's how you would reference the specified article in IEEE style:

G. Di Guglielmo et al., "A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC," in IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 2179-2186, 2021, doi: 10.1109/TNS.2021.3087100.

0070

Inference (GPT-4):

- Multiple clusters of 128 GPUs
- Model <u>carefully mapped onto hardware</u>

Kaplan et al. (2020)

<u>Resources:</u> 128 interconnected GPUs <u>Latency:</u> 10¹ seconds

You

IEEE style reference please: @ARTICLE{9447722,

author={Guglielmo, Giuseppe Di and Fahim, Farah and Herwig, Christian and Valentin, Manuel Blanco and Duarte, Javier and Gingu, Cristian and Harris, Philip and Hirschauer, James and Kwok, Martin and Loncar, Vladimir and Luo, Yingyi and Miranda, Llovizna and Ngadiuba, Jennifer and Noonan, Daniel and Ogrenci-Memik, Seda and Pierini, Maurizio and Summers, Sioni and Tran, Nhan},

journal={IEEE Transactions on Nuclear Science},

title={A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC},

year={2021},

volume={68},

number={8}, pages={2179-2186},

doi={10.1109/TNS.2021.3087100}}

<u>Resources:</u> 128 interconnected GPUs <u>Latency:</u> 10 seconds

You

IEEE style reference please: @ARTICLE{9447722,

author={Guglielmo, Giuseppe Di and Fahim, Farah and Herwig, Christian and Valentin, Manuel Blanco and Duarte, Javier and Gingu, Cristian and Harris, Philip and Hirschauer, James and Kwok, Martin and Loncar, Vladimir and Luo, Yingyi and Miranda, Llovizna and Ngadiuba, Jennifer and Noonan, Daniel and Ogrenci-Memik, Seda and Pierini, Maurizio and Summers, Sioni and Tran, Nhan},

journal={IEEE Transactions on Nuclear Science},

title={A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC},

year={2021},

volume={68},

number={8}, pages={2179-2186},

doi={10.1109/TNS.2021.3087100}}

ChatGPT

Resources:O(10) single chipsLatency:1 millionth of a second5% of internet traffic

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 1510767 1405388

CMS Experiment at the LHC, CERN Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 1510767 1405388

ATLAS ALICE

2,500 bunches 10¹¹ protons 11,000 times/s

Steprotons
Solution 25 ns

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 151076/1405388

$E = mc^2$

Quarks

Leptons

Masses span 9 orders of magnitude!

Leptons

	L^+
	Ľ
	L+

<u>cmsexperiment.web.cern.ch</u>

We had to collide billions of protons, only around 10 signal events were needed to claim discovery!

	L^+
	Ľ
	L+
<u>cmsexperiment.web.cern.ch</u>

We had to collide billions of protons, only around 10 signal events were needed to claim discovery!

	L^+
	Ľ
	L+

The Standard Model

$$\begin{split} & -\frac{1}{2}\partial_{\nu}g_{\mu}^{a}\partial_{\nu}g_{\mu}^{a} - g_{\lambda}f^{abc}\partial_{\mu}g_{\nu}^{a}g_{\mu}^{b}g_{\nu}^{c} - \frac{1}{4}g_{\nu}^{2}f^{abc}f^{abc}g_{\mu}^{c}g_{\nu}^{b}g_{\nu}^{c} + \frac{1}{2}ig_{\nu}^{2}(g_{\nu}^{a}\gamma^{\mu}q_{\nu}^{a})g_{\mu}^{b} + \bar{G}^{a}\partial^{2}G^{a} + g_{\nu}f^{abc}\partial_{\mu}G^{a}G^{b}g_{\mu}^{c} - \partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{b}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}e_{\nu}^{-}M\phi^{0}\phi^{0} - \partial_{h}[\frac{2M^{2}}{2} + \frac{2M}{2}M + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{2}d^{2}\alpha_{h} - igc_{\nu}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}] - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{\nu}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}|A_{\mu}^{2}\partial_{\nu}W_{\mu}^{-}) - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}\phi^{-}+\partial_{\mu}\phi^{0})] + \frac{1}{2}g^{2}W_{\nu}^{-}(H^{2}\phi^{-}\phi^{-}\partial_{\mu}H) - W_{\mu}(H\partial_{\mu}\phi^{+} - W_{\mu}^{+}\phi^{+}) + \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}+A_{\mu}\phi^{+}) + \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) - g^{2}Z_{w}^{-}Z_{\mu}^{-}Z_{\mu}^{0}(W_{\mu}^{+}\phi^{-}) + W_{\mu}^{-}(h^{2}-A_{\mu}\phi^{-}\phi^{-})) + W_{\mu}^{-}(h^{2}-A_{\mu}\phi^{-}\phi^{-}) - \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{-}(D^{0}\phi^{-}\phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(W_{\mu}\phi^{-}\phi^{-}\phi^{-}\phi_{\mu}\phi^{+}) - \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{0}(W_{\mu}\phi^{-}\phi^{-}) - \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{0}(W_{\mu}\phi^{-}\phi^{-}) - \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{0}(W_{\mu}\phi^{-}\phi^{-}) - \frac{1}{2}g^{2}S_{w}^{-}Z_{\mu}^{0$$

O(1) billion collisions per second O(1) PB of data per second

Higgs produced ~1 in a billion collisions!

Saving all collisions not useful (even if we could)!

"Probability" of producing "anything"

"Probability" of producing a Higgs

ATLAS ALICE

2 step rate reduction (hardware+software)

CMS

Software rate reduction (GPU+CPU)

LHC

LHCb

2 step rate reduction (hardware+software)

Geneva ATLAS ALICE

2 step rate reduction (hardware+software)

Continous read-out (CPU+GPU)

Geneva Lake

Geneva LHCb A Data temporarily stored in detector electronics for 4 μ s and the second second (frontend buffering limit) LHC

Geneva Lake

High Level Trigger: 25'600 CPUs / 400 GPUs Latency: 3-400 ms

Reject further 99%!

LHCb

L1 accept: O(100) kHz ~Tb/s

• •

and and

Gee High Level Trigger: Latency 0(100) ms

Ge High Level Trigger: Latency 0(100) ms

Geneva

To make sure we select "the right" 0.0025%, algorithms must be • Fast (get more data through) • Accurate (select the right data)

New Physics is produced less than 1 in a trillion (if at all)

Need <u>more</u> data!

"Probability" of producing "anything"

New Physics?

High Luminosity LHC

New Physics is produced 1 in a trillion

Need <u>more collisions</u> to observe rare processes

High Luminosity LHC

- ×10 data size
- ×3 collisions/s

ructure \rightarrow pile-up of ~ 60 events/x-ing ts/x-ing)

High Luminosity LHC

200 vertices (average 140)

Maintain physics acceptance \rightarrow better detectors

CMS High Granularity (endcap) calorimeter • X20 times more readout channels (6.5 million!!)

More collisions More readout channels

Complete re-design of Level-1

Charged particle tracks (6.4 Tb/s, 200 FPGAs)

ics , no tracking information

- Charged particle tracks
- Particle Flow (40 FPGAs)

- Charged particle tracks
- Particle Flow (40 FPGAs)

- Charged particle tracks
- Particle Flow
- HGCal (4 Tb/s, 200 FPGAs)

Complete re-design of Level-1

- Charged particle tracks
- Particle Flow
- HGCal

Input data ● 2 Tb/s → 63 Tb/s

Latency

• 4 μ s \rightarrow 12 μ s

Extremely high data complexity, Extremely little time

UXC55

CALORIMETRY: 370 FPGAs

*54 for HGCAL only!

ATLAS & CMS: Trigger System

- Current trigger systems
 - L1 trigger
 - Hardware-based, implemented in custom-built electronics

ATLAS & CMS: Trigger System

- Current trigger systems
 - L1 trigger

UXC55

- Hardware-based, implemented in custom-built electronics

Muse of a law and information with we due and an information

12 microseconds latency

Processing 5% of internet traffic

Nanosecond ML inference on FPGAs! 40 billion inferences/s during HL-LHC

Simulated event display with average pileup of 140

\approx all inferences at Google)

<u> = 32

Nanosecond ML inference on FPGAs! 40 billion inferences/s during HL-LHC

L1 trigger

Hardware-based, implemented in sustom-built electronics

Simulated event display with average pileup of 140

$(\approx all inferences at Google)$

<u> = 32

rigger

ept/reject

12.5 µs

MU

7600 MORES

47

7190kHZ

Switching network

Processor

L1 trigger decision in ~2.5 (4) µs for **ATLAS (CMS)**

Current HL-LHC design

Foundation-model based trigger

Why FPGAs?

Why FPGAs?

Latency (resource parallelism)

Why FPGAs?

Throughput (pipeline parallelism)

Latency, latency, latency (cannot do much on a GPU IN 4 µs)

- Can work on different parts of problem, different data simultaneously
- Latency strictly limited by detector frontend buffer

Latency deterministic

• CPU/GPU processing randomness, FPGAs repeatable predictable latency

High bandwidth

• L1T processes 5% of total internet traffic, dissipate heat of ~7W/cm²

KERAS / PyTorch / ONNX

pip install hls4ml pip install conifer

https://github.com/fastmachinelearning/hls4ml https://fastmachinelearning.org/hls4ml/

hls 4 ml HLS project: Vivado / Vitis / Intel Quartus / **IntelOne API / Catapult Conifer**

Prediction

Ideally

Reality

Ideally

- Quantization
- Pruning
- Parallelisation
- Knowledge distillation

Reality

FP16 vs FP32

Quantization

Floating point 32: 4B numbers in [-3.4e38, +3.4e38]

Quantization

Quantising: int8 2⁸=256 numbers in [-128,127]

 $x_q = Clip(Round(\frac{x_f}{scale}))$

Weights Layer 1

Weights Layer 2

Fixed point

Weights Layer 1

Weights Layer 2

Fixed point 0101.1011101010

width

integer

fractional

Weights Layer 1

Weights Layer 2

hls 4 + Google Quantization-aware training

Nature Machine Intelligence 3 (2021)

Forward pass →

Back propagation

hls 4 + Google Quantization-aware training

Nature Machine Intelligence 3 (2021)

Forward pass →

Relution of the second se

from tensorflow.keras.layers import Input, Activation from qkeras import quantized_bits from qkeras import QDense, QActivation from qkeras import QBatchNormalization

3.0

 $\mathbf{x} = \text{Input}((16))$ x = QDense(64,kernel_quantizer = $quantized_bits(6,0,alpha=1)$, bias_quantizer = quantized_bits(6,0,alpha=1))(x) x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ x = QDense(32,kernel_quantizer = $quantized_bits(6,0,alpha=1)$, $bias_quantizer = quantized_bits(6,0,alpha=1))(x)$ x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ $\mathbf{x} = \text{QDense}(32,$ kernel_quantizer = $quantized_bits(6,0,alpha=1)$, $bias_quantizer = quantized_bits(6,0,alpha=1))(x)$ x = QBatchNormalization()(x)

- $x = QActivation('quantized_relu(6,0)')(x)$
- x = QDense(5, kernel_quantizer = quantized_bits(6,0,alpha=1), bias_quantizer = quantized_bits(6,0,alpha=1))(x)

x = Activation('softmax')(x)

Pruning

Pruning

Original image Impulse Noise Gaussian Noise Shot Noise

ImageNet-C

Hooker et al. (2021)

From Brian Bartoldson

From Brian Bartoldson

There exists a optimal network WITHIN each network (lottery ticket) Uncover it through pruning!

Diffenderfer, Bartoldson, et al. (2021)

Quantised input data

Floating point model

Compressed model (Quantised + Pruned)

Firmware design

<u>hls4ml tutorial</u>

Nanosecond ML inference on FPGAs! 40 billion inferences/s during HL-LHC (≈ all inferences at Google)

HEP developed libraries for fast ML on FPGAs

es

Variational Autoencoder

<u>ECON-T, D. Noonan</u>

<u>ECON-T, D. Noonan</u>

<u>ECON-T, D. Noonan</u>

ECON-T, D. Noonan

ECON-T, D. Noonan

Invariance vs equivariance, sets vs graphs for smaller models?

Graphs: Information is assigned to edges, i.e., pairs of nodes.

https://arxiv.org/abs/2402.01876

FPGA: Xilinx Virtex UltraScale+ VU13P

Architecture	Constituents	RF	La	tency [ns] (e	cc)	II $[ns]$ (cc)	DSP	LU
MLP	8	1		105 (21)		5(1)	262~(2.1%)	155,080
	16	1		100(20)		5(1)	226~(1.8%)	$146,\!515$
	32^{a}	1		105 (21)		5(1)	262~(2.1%)	$155,\!080$
DS	8	2		95(19)		15(3)	626~(5.1%)	386,294
	16	4		115(23)		15 (3)	555~(4.5%)	747,374
	32^{a}	8		130(26)		10(2)	434~(3.5%)	903,284
IN	8	2		160(32)		15(3)	2,191~(17.8%)	472,140
	16	4		180(36)		15 (3)	5,362~(43.6%)	$1,\!387,\!923$
	32^{a}	8		205~(41)		15 (3)	$2,\!120~(17.3\%)$	$1,\!162,\!104$

Limitations of current trigger

Trigger threshold

Energy (GeV)

Level-1 rejects >99% of events! Is there a smarter way to select?

Trigger threshold

Energy (GeV)

Look at data rather than defining signal hypothesis a priori • Can we "classify" objects/events? clusters • normal data Х2 • noise anomalous data

 X_1

Ŷ

AD threshold

....in 50 nanoseconds!

Semantic segmentation for autonomous vehicles

N. Ghielmetti et al.

Other examples

- For fusion science phase/mode monitoring
- <u>Crystal structure detection</u>
- <u>Triggering in DUNE</u>
- <u>Accelerator control</u>
- Magnet Quench Detection
- MLPerf tinyML benchmarking
- Food contamination detection
- etc....

Heterogeneous detector Multi-modal input!

 $x = (x_1, x_2, \dots,)$

One model, learn

 $x = (x_1, x_2, \dots,)$

Some new space

One model, learn neural embedding?

Learning the space

Learning the space

By looking at data, we can learn a lot

- Go over input piece by piece
- Analyze every aspect
- Compare every feature
- Find distinctive style of the input
 - can be done e.g by looking for a deviation

Physically motivated augmentations?

• Minimizing and maximizing distances learns a space

Augmented Cat A

Cat B 🔮

Physically motivated augmentations?

No class labels used in training! How do we augment detector data?

Physically motivated augmentations?

No class labels used in training! How do we augment detector data?

Embedded Space can use any NN to embed

QM foundation models

Н

→ embedding quantum mechanics into AI algorithm

 $x = (x_1, x_2, \dots,)$

Training 2: Fine tune for specific task (fast, small dataset, simulation)

Foundation model of the Level-1 trigger

Charged Fradron (e.g. Pion) Photon

Photo

63 Tb/s

Do I really think this will be possible?

Careful software-hardware co-design

O(1M)parameter model on **1000 FPGAs** and do inference in

Accept / Reject

Careful software-hardware co-design

Designed our own protocol to make boards talk to each other fast enough

(25 Gbs to transfer data LHCsynchronously between boards)

Accept / Reject

Masked language modelling

Next-token-prediction

The model is given a sequence of words with the goal of predicting the next word.

Example: Hannah is a ____

Hannah is a *sister* Hannah is a *friend* Hannah is a *marketer* Hannah is a *comedian*

Self-supervised pre-training

Masked-languagemodeling

The model is given a sequence of words with the goal of predicting a 'masked' word in the middle.

Example Jacob [mask] reading

Jacob fears reading Jacob loves reading Jacob enjoys reading Jacob hates reading

Masked particle modelling

Masked calorimeter pre-training?

Tokenisation?

Hardware?

Subscribe to newsletters

Forbes

FORBES > INNOVATION > CLOUD

Groq's Record-Breaking Language Processor Hits 100 Tokens Per Second On A Massive AI Model

Groq: ultra-low latency dedicated language processor dedicated language processors

- Optimised for sequential data
- First ever 100 tokens/s (usually, ~10)

GroqRack™

CMS Experiment at the LHC, CERN Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 1510767 1405388

Why FPGAs?

Why FPGAs?

Latency (resource parallelism)

Why FPGAs?

Throughput (pipeline parallelism)

Latency (resource parallelism) Can work on different parts of problem, different data simultaneously Latency strictly limited by detector frontend buffer

High bandwidth (pipeline parallelism) Phase 2 L1T processes 5% of total internet traffic

Latency deterministic CPU/GPU processing randomness, FPGAs repeatable and predictable latency

Digital signal processors (DSPs) O(5,000) units
16*64 +64*32 +32*32 +32*5 = 4,256 synapses

Digital signal processors (DSPs) 0(5,000) units

Ideally

• Quantization

Reality

Quantization

Floating point 32: 4B numbers in [-3.4e38, +3.4e38]

Quantization

Quantising: int8 2⁸=256 numbers in [-128,127]

 $x_q = Clip(Round(\frac{x_f}{scale}))$

Fixed-point $\langle W, I \rangle$

a way to express fractions with integers!

$= 2^{4} \cdot 0 + 2^{3} \cdot 0 + 2^{2} \cdot 0 + 2^{1} \cdot 1 + 2^{0} \cdot 0 + 2^{-1} \cdot 1 + 2^{-2} \cdot 1 + 2^{-3} \cdot 0 = 2.75$

Fixed-point $\langle W, I \rangle$

0010

Trade off: range (integer bits) and precision (fractional bits). E.g < 8.0 > 1Precision = $\frac{1}{2^{\text{F}}} = \frac{1}{2^8} = 0.00390625$ Range = $[-2^0, -2^0 - 1] = [-1, 0]$

Precision	Approx. Peak
1b	64 000
4b	16 000
8b	4 0 0 0
32b	300

Trillions of quantized operations per second

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Weights can stay entirely on-chip