
Accelerating Large Language Models 
and Generative AI

Generated by Midjourney

…

… …

…Song Han

https://songhan.mit.edu

Associate Professor, MIT

Distinguished Scientist, NVIDIA

@SongHan_MIT

https://efficientml.ai


Song Han: Accelerating Large Language Models and Generative AI

The Need for Efficient AI Computing 
co-design software and hardware

2

[source]

Software is important, the cost is highThe demand for AI computing is increasing fast

https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129


Song Han: Accelerating Large Language Models and Generative AI

Previous Work
Deep Compression and EIE

3

Efficient Inference Engine 

[NIPS’15, ICLR’16, ISCA’16]

Top-5 most cited papers in 50 years of ISCA (1953-2023)

Deep Compression



Song Han: Accelerating Large Language Models and Generative AI

EfficientML Project
Bridge the supply and demand of AI computing

4

Algorithm and system co-design for accelerated AI computing 

Goal: reduce latency, memory, low power/energy; increase throughput, accuracy, scalability. 



Song Han: Accelerating Large Language Models

Low Precision

5



Song Han: Accelerating Large Language Models and Generative AI

SmoothQuant
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

6

Goal: Quantize LLM to lower precision, both activation and weight 

Challenge: activation channels have many outliers, wasting the dynamic range (many channels became zero) 

Our Solution: Smooth the activations: 100*1= 10*10; Equalize the quantization difficult from activation to weights.  

* *=



Song Han: Accelerating Large Language Models and Generative AI

AWQ for On-Device LLM
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

7

AWQ [Lin et al., MLSys 2024]

Goal: deploy LLM on the edge: Jetson Orin, AI PC 

Challenge: weight memory bounded @low batch size; can’t fit; idle ALU. 

Our Solution: 4bit weights, fp16 activation, fp16 arithmetic. 

                      Activation-awareness: preserve the salient weight channel by scaling according to the activation magnitude. 



Song Han: Accelerating Large Language Models

A LightWeight Chatbot for LLMs on the edge

8https://github.com/mit-han-lab/llm-awq

- Deploying LLM on the edge is useful: running copilot services 
(code completion, office, game chat) locally on laptops, cars, 
robots, and more. Protect the privacy. These devices are 
resource-constrained, low-power and sometimes do not have 
access to the Internet.

https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq
https://github.com/mit-han-lab/llm-awq


Song Han: Accelerating Large Language Models and Generative AI

Goal: deploy LLM on the cloud 

Challenge: LLM is too big (Falcon-180B) to fit GPU memory (141GB of H200). 

Our Solution: 4bit weights, fp16 activation, fp16 arithmetic. 

                      Activation-awareness: preserve the salient weight channel by scaling according to the activation magnitude. 

AWQ for Cloud LLM
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

9

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/Falcon180B-H200.mdhttps://github.com/NVIDIA/TensorRT-LLM/



Song Han: Accelerating Large Language Models

Impact of SmoothQuant and AWQ

10

https://github.com/NVIDIA/
TensorRT-LLM#key-features

https://github.com/vllm-project/
vllm/blob/main/vllm/
model_executor/layers/
quantization/awq.py

lm-sys/FastChat https://github.com/lm-sys/
FastChat/blob/main/docs/awq.md

Transformer 
Quantization 

API

https://huggingface.co/docs/
transformers/main_classes/

quantization

lmdeploy
https://github.com/InternLM/

lmdeploy/blob/main/lmdeploy/lite/
quantization/awq.py

https://friendli.ai/blog/Unlocking-
Efficiency-of-Serving-LLMs-with-

Activation-aware-Weight-Quantization-
AWQ-on-PeriFlow/

https://github.com/replicate/vllm-
with-loras/blob/main/vllm/

model_executor/quantization_utils/
awq.py

Granite IBM’s internal code model, 
Granite, utilizes AWQ for 

quantization.

TensorRT-LLM

https://github.com/NVIDIA/TensorRT-LLM#key-features
https://github.com/NVIDIA/TensorRT-LLM#key-features


Song Han: Accelerating Large Language Models and Generative AI

Bit-Delta
Your Fine-Tune May Only Be Worth One Bit

11

 [Liu et al., arXiv 2024]

Goal: efficient LLM finetuning with low precision 

Intuition:  fine-tuning adds less new information to the model, and is thus more compressible. 

Our Solution: quantizes the weight delta down to 1 bit without compromising performance, finetuning the scaling factor 
(per tensor)



Song Han: Accelerating Large Language Models and Generative AI

Bit-Delta
Your Fine-Tune May Only Be Worth One Bit

12

Goal: efficient LLM finetuning with low precision 

Intuition:  fine-tuning adds less new information to the model, and is thus more compressible. 

Our Solution: quantizes the weight delta down to 1 bit without compromising performance, finetuning the scaling factor 
(per tensor)

End-to-end decoding latency, Llam2-7B. We implement a fused binary 
GEMM kernel that allows us to calculate Delta * X in a batched setting while keeping 

the 1-bit deltas quantized. This kernel fuses the dequantization operation with the 
GEMM calculation, reducing the data movement overhead by a large factor.


The more you serve, the more you save!

 [Liu et al., arXiv 2024]



Song Han: Accelerating Large Language Models and Generative AI

Multi-tenant Serving with BitDelta
Your Fine-Tune May Only Be Worth One Bit

13

 [Liu et al., arXiv 2024]



Song Han: Accelerating Large Language Models

Multi-modality

14



Song Han: Accelerating Large Language Models
[Lin et al., CVPR 2024]

15

Visual Language Model

VILA deployed on Jetson Orin

Augments the language model with interleaved image-text

Goal: multi-modal LLM, enhance visual reasoning by language model, enable in-context learning and reasoning across images 

Challenge: learn from visual inputs without destroying the LLM. Computationally heavy to deploy on the edge. 

Our Solution: VILA provides efficient recipe from data curation to training to deployment for VLM. Interleaved image-text 
pretraining enables in-context learning. 



Song Han: Accelerating Large Language Models

In Context Learning and Multi-Image Reasoning

16



Song Han: Accelerating Large Language Models and Generative AI

Sparsity

17

Sparse 
: of few and scattered elements



Song Han: Accelerating Large Language Models and Generative AI

Streaming LLM
Enable long conversations in non-stop streaming applications

18

[Xiao et al., ICLR 2024]
LLM heavily attends to the initial 

token: the “attention sink”.


attention  
sink

Goal: long text generation in streaming LLM applications such as multi-round dialogues and non-stop interaction. 

Challenge: KV cache grows linearly with the conversation => runs out of memory as the conversation goes long;  
                    perplexity explodes after the sequence length exceeds the KV cache size (when the first token is evicted). 

Our Solution: StreamingLLM always keep the “attention sink” tokens in the KV cache; and use windowed KV cache. 

StreamingLLM on iPhone:



Song Han: Accelerating Large Language Models and Generative AI

Long-Lora
Efficient Fine-tuning of Long-Context LLMs

19

Goal: Let LLM remember more; extend the context length.  

Challenge: O(N^2) computation and memory complexity for attention. For longer context, attention becomes expensive. 

Our Solution: LongLoRA invented “shifted, sparse attention” to enable longer context length at low finetuning cost.

[Chen et al., ICLR 2024, Oral]

Lower perplexity, shorter finetuning timeshifted, sparse attention: O(N^2) => O (N*M)



Song Han: Accelerating Large Language Models and Generative AI

Long-Lora
Efficient Fine-tuning of Long-Context LLMs

20

Goal: Let LLM remember more; extend the context length.  

Challenge: O(N^2) computation and memory complexity for attention. For longer context, attention becomes expensive. 

Our Solution: LongLoRA invented “shifted, sparse attention” to enable longer context length at low finetuning cost. 

Results: on a single 8× A100 machine, longLoRA efficiently extends the context length of Llama2-7B from 4k to 100k, Llama2-70B 
to 32k .

[Chen et al., ICLR 2024, Oral]

Llama2: 4K context length LongLoRA: 32K context length



Song Han: Accelerating Large Language Models and Generative AI

Demo

21

LongLoRA 
(ICLR’24 Oral)



Song Han: Accelerating Large Language Models and Generative AI

Demo

22

LongLoRA 
(ICLR’24 Oral)



Song Han: Accelerating Large Language Models and Generative AI

SIGE: Sparse Incremental Generative Engine
Spatially Sparse Inference for Conditional GANs and Diffusion Models

23[Li et al., NeurIPS’2022]

A fantasy beach landscape, trending on artstation.

Original 2.9% Edited

Stable Diffusion+SDEdit: 
1855GMACs  369ms

Ours: 
353G (5.3 )  76.4ms (4.8 )× ×

Designers only edit part of the image at a time; can we save the computation by regenerate only edited pixels?

A photograph of a horse on a grassland.

Original 11.6% Masked

Stable Diffusion: 
1855GMACs  369ms

Ours: 
514G (3.6 )  95.0ms (3.9 )× ×

Image Inpainting Latency Measured on NVIDIA RTX 3090



Song Han: Accelerating Large Language Models and Generative AI

Sparsity in Autonomous Driving

24

Mean IoU: 63.1  Throughput: 3.4 FPS 
(21.7M Params  114.0G FLOPs)

Mean IoU: 63.6  Throughput: 9.1 FPS 
(2.6M Params  15.0G FLOPs)

MinkowskiNet + PVCNN, SPVNAS + Sparse System (TorchSparse)

Mean IoU: 63.6  Throughput: 12.1 FPS 
(2.6M Params  15.0G FLOPs)

PVCNN + SPVNAS 
(NeurIPS’19 Spotlight, ECCV’20)

Radar 
(~6x)

Camera 
(~10x)

LiDAR 
(~4x)



Song Han: Accelerating Large Language Models and Generative AI

Sparsity in Autonomous Driving

25

3D Object Detection BEV Map Segmentation

: Car : 
Pedestrian: Truck : Drivable Area : Lane Divider : Walkway : Crosswalk: Barrier

BEVFusion 
(ICRA’23, Most cited paper in ICRA’21-23)

(as of 2022/6)

3D Detection 
(nuScenes)

🥇 Ranked 1st

(as of 2022/8)

3D Tracking 
(nuScenes)

🥇 Ranked 1st

(as of 2022/11)

3D Detection 
(Waymo)

🥇 Ranked 1st

(as of 2023/6)

3D Detection 
(Argoverse)

🥇 Ranked 1st

Leaderboard



Song Han: Accelerating Large Language Models and Generative AI

Sparsity in Autonomous Driving

26

BEVFusion 
(ICRA’23, Most cited paper in ICRA’21-23)

Industry Adoption:

3D Object Detection BEV Map Segmentation

: Car : 
Pedestrian: Truck : Drivable Area : Lane Divider : Walkway : Crosswalk: Barrier



Song Han: Accelerating Large Language Models

Sparsity in Scientific Discovery

27

Large Hadron Collider (LHC) at CERN GravNet 
(CERN)

Calo-SPVCNN 
(Ours)

Ground Truth

SQ RQ PQ Speedup

GravNet 90.0 82.6 75.9 —

Calo-SPVCNN 92.1 85.4 79.8 11.2×Philip Harris 
(MIT Physics)

Shih-Chieh Hsu 
(UW Physics)

Lindsey Gray 
(Fermilab)

Calo-SPVCNN 
(FastML for Science)



Song Han: Accelerating Large Language Models

Parallelization

28



Song Han: Accelerating Large Language Models and Generative AI

DistriFusion
Accelerate High-Resolution Diffusion Model Inference by Leveraging GPU Parallelism

29

[Li et al., CVPR 2024]

Goal: distributed parallel inference exploiting multiple GPUs to accelerate high-resolution diffusion models. 

Naïve Method: distributes the activation across multiple GPUs by splitting images into patches. 
Challenge: naive parallelization leads to strong artifacts (duplicated object) due to lack of patch interaction. 
Our Solution: DistriFusion communicates the patches, reuses the activations from the previous diffusion step to hide 
networking latency. Insight: adjacent steps’ feature maps are similar.

Artifact (duplication) due to lack of patch 
interaction

Remove artifact by patch communication; Reduce 
communication overhead by reusing the old patch



Song Han: Accelerating Large Language Models

New Architecture, New Primitives

30



Song Han: Accelerating Large Language Models and Generative AI

Efficient-ViT
GPU Accelerated Multi-Scale Linear Attention for High-Resolution Dense Prediction 

31

[Cai et al., ICCV 2023][Zhang et al. arXiv]

Goal: GPU-friendly high-resolution vision transformer architecture for dense prediction (segmentation, SR, SAM, etc) 

Challenge: attention FLOPs grow quadratically with the #tokens, #tokens grows quadratically with the image resolution. 

Our Solution: EfficientViT introduces lightweight multi-scale linear-attention to replace the heavy softmax attention. 

SegFormer:1.6FPS, 82.4mIoU EfficientViT: 21.8FPS, 82.7mIoU

Measured on Nvidia Jetson AGX Orin with TensorRT fp16, bs=1.

EfficientViT-SAM achieves 48x speedup than SAM-ViT



Song Han: Accelerating Large Language Models and Generative AI

ANYcost GAN
Generative AI on the Edge
• Generative model is computationally heavy and slow

• Difficult for interactive photo editing on mobile devices

• Anycost GAN with once-for-all (OFA) network, which contains subnetworks that can independently 
operate.

32

Small sub-net:

low cost,  

fast prototyping

Large sub-net: 
high-quality  
finalization



Song Han: Accelerating Large Language Models

TinyML

33



Song Han: Accelerating Large Language Models 34



Song Han: Accelerating Large Language Models and Generative AI

Learning on the edge
AI systems need to continually adapt to new data collected from the sensors

35

- On-device learning: better privacy, lower cost, customization, life-long learning   
- Training is more expensive than inference, hard to fit edge hardware (limited memory)



Song Han: Accelerating Large Language Models

On-Device Training Under 256KB Memory

36



Song Han: Accelerating Large Language Models

Future work

37



Song Han: Accelerating Large Language Models

Research Roadmap

38

(Supply of Computation)
Hardware

Application
(Demand for Computation)

Algorithm System



Song Han: Accelerating Large Language Models

Research Roadmap

39

Hardware-aware 
NAS
 Distillation
 New Primitive
Quantization
Pruning & Sparsity


scaling down

TinyML

Deployment

scaling up

LargeML

Training



Song Han: Accelerating Large Language Models 40



Song Han: Slide Title https://efficientml.ai

MIT HAN LAB

Thank you

41

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han


Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra” 

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse, 
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s 
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is 
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO 
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks 
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse 
linear algebra. There are two basic operations to be accelerated: union (OR) and join 
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time 
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space 
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC, 
then integrate the HW primitive into TACO. Then, I want to co-design the machine 
learning models that are not only pruned to be sparse, but also with the optimal 
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine 
learning applications accelerated with such sparse primitives: machine translation, 
speech recognition, image classification, and Progressive GAN, which makes real-time 
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy 
efficient by saving the electric bill and total cost of ownership (TCO).


Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.


Project 2: “Optimal Number Representation for Efficient Training/Inference” 

“Number representation” is a fundamental problem for efficient machine learning. For 
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two 
extremes of quantization. The former has easy hw implementation but poor 
expressiveness. The latter has inefficient hw implementation (need register lookup 
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also 
inefficient, since training DNNs needs more dynamic range and exciting methods need 
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large 
design space, we are interested in learning to learn the optimal number representation 
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored 
by AI. I plan to use machine learning techniques to find the best number representation 
for machine learning. It’s a co-design of number representation together with model 
architecture, trading off hardware efficiency and model accuracy. I’d like to push the 
pareto frontier of such trade-off. 


Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.


HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han


Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra” 

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse, 
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s 
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is 
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO 
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks 
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse 
linear algebra. There are two basic operations to be accelerated: union (OR) and join 
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time 
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space 
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC, 
then integrate the HW primitive into TACO. Then, I want to co-design the machine 
learning models that are not only pruned to be sparse, but also with the optimal 
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine 
learning applications accelerated with such sparse primitives: machine translation, 
speech recognition, image classification, and Progressive GAN, which makes real-time 
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy 
efficient by saving the electric bill and total cost of ownership (TCO).


Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.


Project 2: “Optimal Number Representation for Efficient Training/Inference” 

“Number representation” is a fundamental problem for efficient machine learning. For 
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two 
extremes of quantization. The former has easy hw implementation but poor 
expressiveness. The latter has inefficient hw implementation (need register lookup 
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also 
inefficient, since training DNNs needs more dynamic range and exciting methods need 
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large 
design space, we are interested in learning to learn the optimal number representation 
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored 
by AI. I plan to use machine learning techniques to find the best number representation 
for machine learning. It’s a co-design of number representation together with model 
architecture, trading off hardware efficiency and model accuracy. I’d like to push the 
pareto frontier of such trade-off. 


Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.


HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware Accelerated Neural-nets

Media:

songhan.mit.edu  
tinyml.mit.edu

youtube.com/c/MITHANLab
github.com/mit-han-lab

Sponsors:

https://efficientml.ai
https://songhan.mit.edu
http://hanlab.mit.edu
http://youtube.com/c/MITHANLab
https://github.com/mit-han-lab

