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Mapping out the future of Generative AI at MIT
July 2023

Noticeably missing: science!

October 2023

This symposium: Gen AI + physical sciences
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AI + Science: A growing movement

Particle physics

Molecules & materials

Cosmology

Proteins Climate & weather

Learned physics

Dynamical core

Learned
decoder

Forcings

Inputs

Outputs

ODE solver

Dynamic
tendencies

Physics
tendencies

Neural
network

Physics
tendencies

(a) (b)

Noise

Learned
encoder

Learned physics

R
ep

ea
t 

 ti
m

es

Fig. 1 Structure of the NeuralGCM model. (a) Overall model structure, showing how forcings Ft,
noise zt (for stochastic models), and inputs yt are encoded into the model state xt. Model state is
fed into the dynamical core, and alongside forcings and noise into the learned physics module. This
produces tendencies (rates of change) used by an implicit-explicit ODE solver to advance the state in
time. The new model state xt+1 can then be fed back into another time step, or decoded into model
predictions. (b) Inset of the learned physics module, which feeds data for individual columns of the
atmosphere into a neural network used to produce physics tendencies in that vertical column.

as instability and climate drift [17]. So far, hybrid models have mostly been limited to
idealized scenarios such as aquaplanets [18, 19]. Under realistic conditions, ML cor-
rections have reduced biases of very coarse GCMs [20, 21], but performance remains
considerably worse than state-of-the-art models.

Neural general circulation models

Here we present NeuralGCM, the first fully-di↵erentiable hybrid general circulation
model of the Earth’s atmosphere. NeuralGCM is trained on forecasting up to 5-day
weather trajectories sampled from ERA5. Di↵erentiability enables end-to-end “online
training” [22], with ML components optimized in the context of interactions with
the governing equations for large-scale dynamics, which we find enables accurate and
stable forecasts. NeuralGCM produces physically consistent forecasts with accuracy
comparable to best-in-class models across a range of time-scales, from 1-15 day weather
to decadal climate prediction.

A schematic of NeuralGCM is shown in Fig. 1. The two key components of Neu-
ralGCM are a di↵erentiable dynamical core for solving the discretized governing
dynamical equations, and a learned physics module that parameterizes physical pro-
cesses with a neural network, described in full detail in Appendix B and C. The
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This demonstrates that the model generates the glass state and
recovers its dynamics and structure almost perfectly, despite
having seen only the high-temperature molten training data. We
also include results from a longer NequIP-driven MD simulation
of 500 ps, which can be found in the SI.

Lithium thiophosphate superionic transport. To show that
NequIP can model kinetic transport properties from small
training sets at high accuracy, we study Li-ion diffusivity in LiPS
(Li6.75P3S11), a crystalline superionic Li conductor consisting of a
simulation cell of 83 atoms13. MD is widely used to study dif-
fusion; training a ML-IP to the accuracy required to predict
kinetic properties, however, has in the past required large training
set sizes (49 e.g. uses a data set of 30,874 structures to study Li
diffusion in Li3PO4). Here we demonstrate that not only does
NequIP obtain small errors in the energies and force components,
but it also accurately predicts the diffusivity after training on a
data set obtained from an AIMD simulation. Again, we find that
very small training sets lead to highly accurate models, as shown
in Table 4 for training set sizes of 10, 100, 1000 and 2500 struc-
tures. We run a series of MD simulations with the NequIP
potential trained on 2500 structures in the NVT ensemble at the
same temperature as the AIMD simulation for a total simulation
time of 50 ps and a time step of 0.25 fs, which we found
advantageous for the reliability and stability of long simulations.
We measure the Li diffusivity in these NequIP-driven MD
simulations (computed via the slope of the mean square

displacement) started from different initial velocities, randomly
sampled from a Maxwell-Boltzmann distribution. We find a
mean diffusivity of 1.25 × 10−5cm2/s, in excellent agreement with
the diffusivity of 1.37 × 10−5cm2/s computed from AIMD, thus
achieving a relative error of as little as 9%. Fig. 4 shows the mean
square displacements of Li for an example run of NequIP in
comparison to AIMD.

Data efficiency. In the above experiments, NequIP exhibits
exceptionally high data efficiency. It is interesting to consider the
reasons for such high performance and verify that it is connected
to the equivariant nature of the model. First, it is important to
note that each training configuration contains multiple labels: in
particular, for a training set of M first-principles calculations with
structures consisting of N atoms, the energies and force compo-
nents together give a total of M(3N+ 1) labels. In order to gain
insight into the reasons behind increased accuracy and data
efficiency, we perform a series of experiments with the goal of
isolating the effect of using equivariant convolutions. In parti-
cular, we run a set of experiments in which we explicitly turn on
or off interactions of higher order than l= 0. This defines two
settings: first, we train the network with the full set of tensor
features up to a given order l and the corresponding equivariant
interactions. Second, we turn off all interactions involving l > 0,
making the network a conventional invariant GNN-IP, involving
only invariant convolutions over scalar features in a SchNet-style
fashion.

As a first test system we choose bulk water: in particular we use
the data set introduced in50. We train a series of networks with
identical hyperparameters, but vary the training set sizes between
10 and 1000 structures. As shown in Fig. 5, we find that the
equivariant networks with l∈ 1, 2, 3 significantly outperform the
invariant networks with l= 0 for all data set sizes as measured by
the MAE of force components. This suggests that it is indeed the
use of tensor features and equivariant convolutions that enables
the high sample efficiency of NequIP. In addition, it is apparent
that the learning curves of equivariant networks have a different
slope in log-log space. It has been observed that learning curves
typically follow a power-law of the form51: ϵ∝ aNb where ϵ and
N refer to the generalization error and the number of training
points, respectively. The exponent of this power-law (or
equivalently the slope in log-log space) determines how fast a
learning algorithm learns as new data become available. Empirical
results have shown that this exponent typically remains fixed
across different learning algorithms for a given data set, and
different methods only shift the learning curve, leaving the log-log
slope unaffected51. The same trend can also be observed for
various methods on the aspirin molecule in the MD-17 data set

Table 4 NequIP E/F MAE/RMSE for LiPS and Li4P2O7 for
different data set sizes in units of [meV/Å] and [meV/atom].

System Data set size MAE RMSE

LiPS 10 Energy 2.03 2.54
Forces 97.8 132.4

LiPS 100 Energy 0.44 0.56
Forces 25.8 35.0

LiPS 1000 Energy 0.12 0.15
Forces 7.7 10.8

LiPS 2500 Energy 0.08 0.10
Forces 4.7 6.5

Li4P2O7, melt 1000 Energy 0.4 0.8
Forces 34.0 59.5

Li4P2O7, quench 1000 Energy 0.5 0.5
Forces 21.3 34.9

The model for Li4P2O7 was trained exclusively on structures from the melted trajectory. The
reported test errors for the melt are computed on the remaining set of structures from the full
melt trajectory; errors for the quench are computed on the full quench trajectory.

Fig. 2 Benchmark systems. Left: Quenched glass structure of Li4P2O7, including the tetrahedral bond angle (bottom left) and the bridging angle between
corner-sharing phosphate tetrahedra (top right). Right: The formate on Cu system. Perspective view of atomic configurations of (a) bidentate HCOO (b)
monodentate HCOO and (c) CO2 and a hydrogen adatom on a Cu(110) surface. The blue, red, black, and white spheres represent Cu, O, C, and H atoms,
respectively. The subset shown in each subplot is the corresponding top view along the <110> orientation.
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Google (Neural GCM 2023)

Batzner et al [NequIP; Nat.Comm. 2021]

DeZoort et al [Nat.Rev.Phys. 2023]

Watson et al [RFDiffusion; Nature. 2023]

Proof of concept  Adoption  Progress!⟶ ⟶

Astrophysics

Fig. 1. The SimBIG forward model produces simulated galaxy samples with the same survey geometry and observational systematics as the observed BOSS CMASS SGC
galaxy sample. We present the 3D distribution of the galaxies from three different viewing angles. The colormap represents the redshift of the galaxies. In the top set of panels,
we present the distribution of galaxies in the CMASS sample. In the bottom, we present the distribution of a simulated galaxy sample, generated from our forward model. The
SimBIG galaxy samples are constructed from Quijote N -body dark matter simulations using an HOD model that populates dark matter halos identified using the Rockstar
algorithm. The 3D distributions illustrate that our forward model is able to generate galaxy distributions that are difficult to statistically distinguish from observations. For more
comparisons of the 3D distributions, we refer readers to �.

Hahn et al. PNAS | November 3, 2022 | vol. XXX | no. XX | 3

Hahn et al (SimBIG; PNAS 2023)
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AI + Physics: A new frontier?
Many fields within AI4Science are pushing the frontiers of AI… what about physics?

Physics can be a frontier for AI!

(From A3D3 website)

Extremely fast real-time inferenceReliable inference with complex forward models

• Sampling under complex symmetries and exactness 
guarantees (e.g., in lattice QFT) 

• Statistical anomaly detection 

• Highly structured models/data-generating processes 

• …

Framing: Kyle Cranmer
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Generative AI / foundation models: More of the same? A paradigm shift?

Augmenting existing capabilities? New ways of doing things?
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Figure 1: A foundation model for materials modelling. Trained only on Materials Project data (19)
which consists primarily of inorganic crystals and is skewed heavily towards oxides, MACE-MP-0 is capable
of molecular dynamics simulation across a wide variety of chemistries in the solid, liquid and gaseous phases.

4

Batatia et al, A foundation model 
for atomistic materials chemistry

Jing et al, AlphaFlow

Aquarius

Collider physics Cosmology
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Broad themes and questions

•What is the potential impact of generative AI in the physical sciences? 
• David Hogg (NYU/Flatiron): Physics-Motivated Approaches to Model Design: Observations and Data Analysis 
• Anna Scaiffe (Manchester): Foundation Models in Physics: Successes in Astrophysics 
• Thea Aarrestad (ETH Zurich): Physics-Motivated Approaches to Hardware Design  
• David Hogg (NYU/Flatiron), Pavel Izmailov (OpenAI), Matt Schwartz (Harvard): Panel: Potential impacts of 

generative AI in physics

•What is needed from a community perspective to achieve these impacts 
• Dan Huttenlocher (MIT), Vijay Reddi (Harvard), Jesse Thaler (MIT/IAIFI): Panel: Community Perspectives on 

what is needed for gen AI to fulfill its promise in physics

•What are pathways for contributions from the physical sciences to influence generative AI? 
• Hidenori Tanaka (Harvard): Physics-Motivated Approaches to Model Design: Natural Science of AI

•What are the synergies and differences from other fields? 
• Kevin Yang (Microsoft Research): Foundation Models beyond Physics: Successes in Molecular Biology 
• Simon Batzner (Google): Physics-Motivated Approaches to Model Design: Deep Learning 
• Song Han (MIT EECS): Big vs. Small Generative Models (Song Han)
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= AI + Physics*

*Not just “fundamental interactions”!

One of the inaugural NSF AI Institutes

NSF AI Institute for Artificial Intelligence and Fundamental Interactions

(IAIFI, 🗣: eye- ) ϕ

Northeastern

Harvard
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Connect with IAIFI

Socials

Pre-registration now open 
https://iaifi.org/summer-workshop.html  

Summer Workshop

Public Colloquia

In-person at MIT + Zoom. Next up: 

• March 22: Soledad Villar (JHU) 
• April 12: Jennifer Ngadiuba (Fermilab)

https://iaifi.org/summer-workshop.html
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IAIFI Organizers

Phil Harris 
Associate Professor, MIT/IAIFI/A3D3

Phiala Shanahan 
Associate Professor, MIT/IAIFI

Gaia Grosso 
IAIFI Fellow, MIT/Harvard/IAIFI

Siddharth Mishra-Sharma 
IAIFI Fellow, MIT/Harvard/IAIFI

Marisa Lafleur 
Project Manager, IAIFI
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Schedule: Day 1

Speaker Title Time

Anna Scaife Foundation Models in Physics: Successes in Astrophysics 9:30–10:30 am

Coffee  Break 10:30–11:00 am

Simon Batzner Physics-Motivated Approaches to Model Design: Deep Learning 11:00 am–12:00 pm

Lunch Break 12:00–1:30 pm

Kevin Yang Foundation Models beyond Physics: Successes in Molecular 
Biology 1:30–2:30 pm

Coffee  Break 2:30–3:00 pm

David Hogg Physics-Motivated Approaches to Model Design: Observations 
and Data Analysis 3:00–4:00 pm

Dan Huttenlocher, Vijay Reddi, Jesse 
Thaler

Panel: Community Perspectives on what is needed for gen AI to 
fulfill its promise in physics 4:00–5:30 pm

Talks

Panel
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Schedule: Day 2

Talks

Panel

Speaker Title Time

Pavel Izmailov, Matt Schwartz,  
David Hogg

Panel: Potential impacts of generative AI in physics 9:00–10:30 am

Coffee  Break 10:30–11:00 am

Song Han Big vs. Small Generative Models 11:00am–12:00 pm

Lunch Break 12:00–1:30 pm

Thea Aarrestad Physics-Motivated Approaches to Hardware Design 1:30–2:30 pm

Coffee  Break 2:30–3:00 pm

Hidenori Tanaka Physics-Motivated Approaches to Model Design: Natural Science of 
Artificial Intelligence 3:00–4:00 pm

Jared Kaplan Fireside Chat: Jared Kaplan, Anthropic (Virtual) 
Moderated by Jesse Thaler 4:00–5:15 pm

Fireside 

chat


