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Industrial revolutions give birth to new physics 
History: Steam Engines & Thermodynamics

1712: The first commercially successful steam engine 

1776: Industrial revolution triggered by Watt’s steam engine 

1824: The birth of thermodynamics By Sadi Carnot, Military Engineer

ChatGPT moment??

Electrical Engineering 
& Solid-state physics

Engines 
& Thermodynamics

Scientifically deep and practically impactful questions open up new physics

recording ~10,000 neurons
Kim, …, Schnitzer Cell Reports2016

Physics of Biological/Artificial 
Neural Networks

“Physics of Intelligence” is a new frontier in physics!

Chemical Engineering 
& Soft matter physics 



Conventional Paradigm: 
• A computer precisely executes human-defined algorithms. 
• Theoretical Computer Science: Constructing a rigorous mathematical theory of convergence and error, etc.

Science and Engineering of 
Superconductivity

Mod. Calculation Phonetic Alphabet 
 transliterate

Math Word Problems

Model scale (Training FLOPs)

Paradigm of Deep Learning: Engineering with Emergent Abilities 
• Artificial organism with ~100 billion parameters trained on ~trillions of words 
• Emergence of capabilities with the scaling of data, model, and compute. 
• Empirical characterization and theoretical modeling of emergent phenomena, akin to physics.

Modern AI systems are high-dimensional, nonlinear, and stochastic dynamical systems  
with rich emergent phenomena.

Can there be“Natural” Science of “Artificial” Intelligence?



1. Can generative AI (diffusion models) imagine? If so, how? 

2. Learning as physical dynamics: 

Computing and Learning as Physical Processes

"Compositional Abilities Emerge Multiplicatively: Exploring Diffusion Models on a Synthetic Task”

NeurIPS 2023 
M. Okawa*, E.S. Lubana*, R.P. Dick, H. Tanaka*

"Noether’s Learning Dynamics: Role of Symmetry Breaking in Neural Networks” NeurIPS 2021 
H. Tanaka, D. Kunin  

“Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics” ICLR 2021 
D. Kunin*, J. Sagastuy, S. Ganguli, D.L.K Yamins, H. Tanaka* 
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Abstraction and generalization is a cornerstone of natural intelligence!

Q. Is there a 'universal' mechanism that governs intelligence?  
If so, where does it come from?

Let’s build an interdisciplinary “Science of Natural and Artificial Intelligence”, bridging 
physics, neuroscience, psychology, and computer science!

But it’s no longer unique to the brain with the rise of artificial neural networks.

Thesis: Universal mechanisms of intelligence emerge from shared 
evolutionary pressures (task) and experiences (data) within the physical world!



Concept Learning and Compositional Generalization

Babies play with the world to construct a causal predictive model. 
This involves: (i) learning concepts, (ii) understanding their relationships,  

and (iii) making predictions and conducting experiments to refine their model.



Artificial networks show ‘sparks’ of concept learning and generalization

“a panda through the lens  
of a magnifying glass.”

“a small light ball and a large 
 heavy ball balanced on a seesaw.”

“A panda skiing with an iguana  
holding hands in Aspen.”



Artificial networks even has trouble composing "shape" and "color"!

Stable Diffusion Model, as of July 2023

Q: Can artificial networks compose shape, size, and color concepts in novel ways? 
If so, how does this capability emerge?



Our Approach: A Simple Task Requiring Compositional Generalization



Our Approach: A Simple Task Requiring Compositional Generalization

Image
Tuple

Train Set Test
(1,a) (2,a) (1,b) (2,b)

?

Q. “Generate an object corresponding to (2,b)”



Train Set Test
(1,a) (2,a) (1,b)

Image
Tuple (2,b)

(1,a)(2,a) (1,b)

 : circle, : triangle1 2
Shape

: red, : bluea b
Color

Q. “Generate an object corresponding to (2,b)”

Our Approach: A Simple Task Requiring Compositional Generalization



Concept Graph: A Novel Model of Compositional Structures

shape
color
size

location
angle

Definition 1. (Concept Variables.) Let  
be a set of  concept variables, where each  represents a 
specific property of an object.  

V = {v1, v2, . . . , vn}
n v

Concept Variables



Definition 2. (Concept Values.) For each concept variable 
, let  be the set of  possible 

values that  can take. Each element of the set  is called a 
concept value.

vi ∈ V Ci = {ci1, ci2, . . . , ciki
} ki

vi Ci
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Concept Graph: A Novel Model of Compositional Structures
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Definition 3. (Concept Class.) A concept class  is an ordered 
tuple , where each  is a concept 
value corresponding to the concept variable . If an object  
belongs to concept class , then .

C
(v1 = c1, v2 = c2, . . . , vp = cp) ci ∈ Ci

vi x
C vi(x) = ci ∀i ∈ 1,…, p
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Definition 4. (Concept Distance.) Given two concept classes 
 and , the concept 

distance  is defined as the number of elements that 
differ between the two concept classes:

C(1) = (c(1)
1 , c(1)

2 , . . . , c(1)
n ) C(2) = (c(2)

1 , c(2)
2 , . . . , c(2)

n )
d(C(1), C(2))

d(C(1), C(2)) =
n

∑
i=1

I(c(1)
i , c(2)

i )

Concept Graph: A Novel Model of Compositional Structures
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Definition 5. (Compositional Generalization.) Consider a model 
trained to generate samples from concept classes 

. We say the model compositionally generalizes 
if it can generate samples from a class  such that 

. 

Ĉ = (C1, C2, . . . , Cn)
C̃

d(C̃, C) ≥ 1∀C ∈ Ĉ
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How do compositional structures shape neural learning and computation?

Q1. Can a “diffusion model” generalize to concept classes it has never seen in the training set?

Q2. If so, in what order does the diffusion model generalize?
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Step 1. Forward Diffusion: Take an image  and keep adding Gaussian noise. x0

Diffusion model: Neural network model for image generation

“Deep Unsupervised Learning using Nonequilibrium Thermodynamics” 
J. Sohl-Dickstein, E.A. Weiss, N. Maheswaranathan, S. Ganguli ICML (2015)

xTxtxt−1x0 ••• •••

where xt = xt−1 + ξ, ξ ∼ 𝒩(0,I)
Step 2. Learning Reverse Process: Learn non-linear mapping to de-noise image from  to .xt xt−1

q(xt−1 |xt) is unknown

xTxtxt−1x0 ••• •••



Ground truth image before adding noise

xt−1

Image de-noised by neural network

xt

f(xt; Θ, shape, size, color)

Diffusion model: Neural network model for image generation



Ground truth image before adding noise
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Diffusion model: Neural network model for image generation



Ground truth image before adding noise

xt−1

xt

Image de-noised by neural network

f(xt; Θ, shape, size, color)

argminΘ |xt−1 − f(xt; Θ, shape, size, color) |2

Diffusion model: Neural network model for image generation
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 =f ∘ f ∘ …f ∘ f( ; Θ, triangle, small, blue)
Step 3. Generate image from noise using the learned function with optimized parameters ( )Θ

?
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Can a neural network learn concepts and compose them in new ways?

Generated outputs of the diffusion model as a function of optimization steps
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Concept distance governs the order of generalization

Accuracy: Train linear probes for each concept and measure accuracy as product of probability of correctness of concept (a usual metric in Disentanglement literature) 

Training data

1

1

1

Optimization time (epochs)

Arithmetic Calculation Math Word Problems

Model scale (Training FLOPs)

Emergence of complex abilities



Why can the diffusion model generalize compositionally? 
Effective "network depth"!

Effective Network Depth  (= Inference Time Steps )× 7
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Claim:  
Capabilities that require composition of atomic abilities (skills) show emergent curves

• There are  capabilities, each with a probability  of being learned in a given time 
step. (i.e., the dynamics of learning as a Bernoulli coin flip) 

• The probability that the ability will be learned in  steps:  

• The probability that the compositional capability has been learned by time  is 
. 

• The critical time  at which a compositional capability is learned: 

n p

t 1 − (1 − p)t

t
P(n) = (1 − (1 − p)t)n

t*

t* = log(1 − (P*)1/n)
log(1 − p)

The learning curve becomes sharper as the task becomes more compositional!

Compositionality underlies the emergence



• There are  capabilities, each with a probability  of being learned in a given time 
step. (i.e., the dynamics of learning as a Bernoulli coin flip) 

• The probability that the ability will be learned in  steps:  

• The probability that the compositional capability has been learned by time  is 
. 

• The critical time  at which a compositional capability is learned: 

n p

t 1 − (1 − p)t

t
P(n) = (1 − (1 − p)t)n

t*

t* = log(1 − (P*)1/n)
log(1 − p)

The learning curve becomes sharper as the task becomes more compositional!

Training FLOPs

Our experiment with diffusion models Emergent abilities in large language models

n: concept distance

Compositionality underlies the emergence



Practical Insights for Trustworthy AI: 
Compositional generalization to minority class requires extensive training

1

1

1

2

Training data

Generalization to minority gender happens at the end!
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Hair color

Towards Fair AI: Verifying our hypotheses in realistic settings



What about large language models? Signatures of compositionally

Composition of arithmetic operations Composition of content and style in writing

“Compositional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks” 
R. Ramesh, E.S. Lubana, M. Khona, R.P. Dick, and H. Tanaka



Compositional Task on Sequential Data
Task: Function Composition

Character One-hot vector

x ∈ R# of characters“ ”6

Vectorization:

Prompt Structure:

Task tokens Input Output
S  656469  070508  …  121416  979490F(1)

1 F(2)
4 F(3)

2 F(4)
3 F(5)

3

e.g.) bijection: F(1)
1

6 5 6 4 6 9

0 7 0 5 0 8

̂xt+1 = f(x1, x2, …, xt; Θ)

argminΘ[∑
t

− xt+1 ⋅ log ̂xt+1]
Sequence prediction task:

Correct answer Prediction



LSTM (RNN) fails to compositionally generalize
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Hidden layer dimension

Test Accuracy

Train Accuracy

Train a model on 50 random compositions of 5 functions. 
Test it on all (5^5 = 3125) compositions.



Generalizing to 3125 (=55) compositional functions 
by just seeing 50~100 examples!

Transformers compositionally generalize successfully!



Compositional structure in the "task" induces "universal" learning dynamics!

# of  
compositions

0
1
2
3
4
5

Wave of Generalization on Concept Graph



Attention Mechanism Enables Compositional Generalization

Attention focuses on task and current tokens Linear probe accuracy jumps after MLP layers

2. MLP:

1. Attention:

A neural computational mechanism for compositional generalization!

Applies the Selected Function

Picks a Function to Apply



Future Direction: 
Towards Neural Principles for Concept Learning and Generalization

“a blue triangle 
in between two red squares”

“a blue triangle with one 
 of the vertices pointing down”

Objects’ Geometry
“three people”

“four people”

Numbers

“a small light ball and a large 
 heavy ball balanced on a seesaw.”

“a blue circle rolling on  
one side of a red triangle”

Mechanics

“a panda through the lens  
of a magnifying glass.”

“light source in the room illuminates  
a triangle from behind at an angle.”

Optics

What are good mathematical models of the data & task?

How do the laws of the physical world shape the dynamics of 
neural learning and computation?

“Particle physics really was a mess in the 1960s. 
Go for the messes — that’s where the action is.”  

by Steven Weinberg

What neural network principles enable compositional generalization?
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Large neural networks are extremely fragile to choices we make at initialization

e.g., LLaMA/ChatGPT-3: ~100billion (109) parameters 
trained on ~1trillion (1012) words  

Each training run of modern AI costs $2~3 million!

A single failure can cost 
$~millions!

M. Wortsman et al. Google 2023
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Training time: t
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VGG16 trained on Tiny ImageNet

Q. What are the laws that govern complex deep learning dynamics?

“Deep”: Architectures 
ReLU 

BatchNorm 
Layer Norm 
GroupNorm 
WeightNorm 

SoftMax 
Convolution 
Transformer 

Residual connection 
…

“Learning”: Optimizers 
Stochastic Gradient Descent 

AdaGrad 
Adam 

RMSProp 
AdamW 

Heavy-ball momentum 
Nesterov momentum 

Natural gradients 
…

Symmetry Lagrangian

We construct a Lagrangian framework to understand the dynamics of learning!



q0

q1

q2

q0

q1

qN

Parameter spacePhysical space

Neural MechanicsClassical Mechanics v.s.

Equation of motion: 
F(x) = m∂2

t x

Forces: 
Gravity, Electric/Magnetic, Friction etc…

Symmetries in Lagrangian: 
Translation in time/space, Rotation

Conservation laws: 
Energy, momentum, angular momentum

Equation of learning: 
Gradient Descent: q(t + η) = q(t) − η∇f(q)

Forces: 
Gradients driven by real world dataset

Symmetries in the Loss function: 
Translation, Scale, Rescale

(Broken) conservation laws: 
Dynamics of parameter combinations

Neural learning as physical dynamics



In a bright room

How does scale symmetry  affect the “dynamics” of learning? 
Let’s generalize Noether’s theorem for scale symmetry!

f(sq) = f(q)

Mechanism: Normalizing signal at each step of neural computation

Norm(q) = q − E[q]
Var[q] Norm(sq) = sq − E[sq]

Var[sq]
= Norm(q)

Visual signal

q

In a dark room s × q
Intensity

Scale invariance   
is one of the most ubiquitous symmetries in neural networks

f(sq) = f(q)



Symmetry
Translation Scale

BatchNormExample Softmax

Symmetry: A function  posses a symmetry if it is invariant under the  
transformation . i.e. if  for any .

f(q)
q ↦ Q(q, s) f(Q(q, s)) = f(q) (q, s)

q0

q1

qN

Parameter space
q0

q1

qN

Rotation

f(q) = f(q + s ̂n) f(q) = f(sq)f(q) = f (R(s)q)

Self-Supervised Learning

q0

q1

qN

Loss function: V ∝ f(q)Euclidean learning rules: T ∝ | dq
dt |2

ℒ = T V−

ReLU* (*Re-scale)
q2ReLU(q1x) = q2max(0,q1x)BN(qx) = qx − E[qx]

Var(qx)
σ(qx)i = eqix

∑j eqjx
L( fT(x)f(x′ ))

Symmetry unifies neural architectures



Blue curve: gradient flow 
Red curve: modified trajectory 
Black dots: discrete SGD steps

Gradient descent:
qn+1 = qn − η∇f(q)

(S)GD becomes Lagrangian dynamics in practical settings with a finite learning rate

ℒ(q, ·q, t) = e
2
η t [ η

4 | ·q |2 − f(q)]

Forward Euler discretization:

1
η (q(t + η) − q(t)) = 1

η (q(t) + η
dq
dt

+ η2

2
d2q
dt2 − q(t)) = − ∇f(q)

Gradient flow:
dq
dt

= − ∇f(q)
Modified gradient flow:

η
2

dq2

dt2 + dq
dt

= − ∇f(q)

Damping

Kinetic energy (T) ⇔ Learning rules Potential energy (V) ⇔ Loss function

Newton’s equation of motion:


m
dq2

dt2 = − ∇f(q)

Lagrangian of modern practical optimizer with finite step size ,η

Modeling discrete learning dynamics in continuous time

Lagrangian unifies learning rules

Forward Euler discretization:




Blue curve: gradient flow 
Red curve: modified trajectory 
Black dots: discrete SGD steps

ℒ(q, ·q, t) = e
2(1 − β)
η(1 + β) t [ η(1 + β)

4 | ·q |2 − (f(q) + k
2 |q |2 )]

Damping

Kinetic energy (T) ⇔ Learning rules Potential energy (V) ⇔ Loss function

SGD becomes Lagrangian dynamics in practical settings with a finite learning rate

Gradient descent:
qn+1 = qn − η∇f(q)

Forward Euler discretization:

1
η (q(t + η) − q(t)) = − ∇f(q)

Gradient flow:
dq
dt

= − ∇f(q)
Modified gradient flow:

η
2

dq2

dt2 + dq
dt

= − ∇f(q)
Newton’s equation of motion:


m
dq2

dt2 = − ∇f(q)

Lagrangian of modern practical optimizer with finite step size ,η momentum ,β
and weight decay .k

Modeling discrete learning dynamics in continuous time

Lagrangian unifies learning rules



q0

q1
f(q) = 1

2 q2
0

Loss function: V ∝ f(q)Euclidean learning rules: T ∝ | dq
dt |2

Kinetic asymmetry: The kinetic energy does not observe the same symmetry as 
the potential function unique to learning systems.

Translation: Q(q, s) = q + s ̂n Rotation: Q(q, s) = R(s)q Scale: Q(q, s) = sq

f(q) = − C
|q |

q1

q0

R(s)q

q1

q0 f(q) = f(αq)

q + s ̂n 1

ℒ = T V−

∂s
·Q2 = 0 ∂s

·Q2 = 0 ∂s
·Q2 |s=1 = ∂ss2 ·q2 |s=1 ≠ 0

: Timet
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VGG11 with BatchNorm 
on Tiny ImageNet
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s
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Kinetic energy of learning  breaks the symmetry in deep learningT
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combination dynamics theory

Training time: t

Pa
ra

m
et

er
 c

om
bi

na
tio

ns
: 

||
W

l(t
)|

|2

Training time: t

Pa
ra

m
et

er
 c

om
bi

na
tio

ns
: 

||
W

l(t
)|

|2

Training time: t

Pa
ra

m
et

er
s:

 θ i

parameter dynamics
conv. 2

conv. 3

conv. 4

conv. 5

conv. 6

conv. 7

conv. 8

conv. 9

conv. 10

conv. 11

conv. 12

conv. 1

VGG16
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Noether charge for scale symmetry:
⟨Δh, ∂sQ⟩ ∝ = 1

2
d
dt

|q |2

VGG 16 trained on Tiny-ImageNet

Noether’s learning dynamics

d
dt ⟨Δh, ∂sQ⟩ + ·γt⟨Δh, ∂sQ⟩ = ⟨Δh, ∂s

·Q⟩ + eαt⟨Δh − e−αt ∇2h(q) ·q, ∂sQ⟩
Δh(q, ·q, αt) ≡ ∇h(q + e−αt ·q) − ∇h(q) .

Noether’s learning dynamics:

d
dt ⟨Δh, ∂sQ⟩ = 0d
dt ⟨Δh, ∂sQ⟩ + ·γt⟨Δh, ∂sQ⟩ = 0d
dt ⟨Δh, ∂sQ⟩ + ·γt⟨Δh, ∂sQ⟩ = ⟨Δh, ∂s

·Q⟩
Noether charge damping kinetic asymmetry non-Euclidean metric
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Our theory matches 
experiment exactly!
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Noether charge dissipation dynamic asymmetry non-Euclidean metric
d
dt ⟨Δh, ∂sQ⟩ + ·γt⟨Δh, ∂sQ⟩ = ⟨Δh, ∂s

·Q⟩ + eαt⟨Δh − e−αt ∇2h(q) ·q, ∂sQ⟩
Δh(q, ·q, αt) ≡ ∇h(q + e−αt ·q) − ∇h(q) .

Noether’s learning dynamics:
Validating the Noether’s learning dynamics (Scale symmetry)



Noether’s Learning Dynamics offers practical insights and algorithms!

“Machine learning has become alchemy! Batch Normalization works amazingly well.  
But we know almost nothing about it.” by Ali Rahimi 2017

“Normalization    ～    Adaptive Optimization”
(Architecture) (Learning rule)

G(t) = 1 − ρ
η ∫

t

0
e− 1 − ρ

η (t−τ) |g(τ) |2 dτ + e− 1 − ρ
η G(0)|q(t) |2 = 2η(1 + β)

(1 − β)3 ∫
t

0
e− 4k

1 − β (t−τ) | ̂g(τ) |2 dτ + e− 4k
1 − β t |q(0) |4

1. Demystifying the role of normalization layers in deep learning

2. Using scale symmetry to compress networks by ~100x for energy efficiency

Pruning neural networks without any data by iteratively conserving synaptic flow

H. Tanaka*, D. Kunin*, D. Yamins, S. Ganguli (NeurIPS 2020)


"Physics of AI" inspired algorithm 

with practical impact!



Summary

•Task Induced Universality: Symmetry of the data and task shapes 
symmetries in artificial and biological neural networks.

•Generalizing Physics: Noether’s learning dynamics accounts for kinetic 
asymmetry, dissipation, and non-Euclidean geometry inherent in learning.

•Practical Insights: Demystifying the alchemy of normalization layer. 
“Normalization ~ Adaptive Optimization”

q0

qN

"Noether’s Learning Dynamics: Role of Symmetry Breaking in Neural Networks” NeurIPS 2021 
H. Tanaka, D. Kunin  

“Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics” ICLR 2021 
D. Kunin*, J. Sagastuy, S. Ganguli, D.L.K Yamins, H. Tanaka* 

•Lagrangian Formulation of Learning: Symmetry unifies the 
architectures and kinetic energy unifies learning rules.
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Blue oceans in AI Research

Conclusion: Shared evolutionary pressures (task) and experiences (data) within the 
physical world → Shared neural mechanisms for learning and computation!

Compositional structure of concepts/functions 
→ Universal wave of generalization in concept graph

Scale symmetry in the task 
→ Generalized Noether’s theorem for learning dynamics
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