Discovering global Lyapunov
functions

What does it take to solve a hard math problem?
Francois CHARTON, Meta Al

Local stability of dynamical systems

* Adynamical system is a system of n equations in n variables, such
that x = f(x), x€eR" f:R*"->R"

* At x4, suchthat f(x,) = 0, the system is locally stable if all the

(complex) eigenvalues of the Jacobian (%

9%, have negative

)(i,j)eN%
real parts

* Transformers can learn this (Charton, Hayat, Lample, ICLR 2021)

Global stability of dynamical systems

» Behavior around a stable equilibrium in x, = 0
e Ifx(t) <6 fort =0,dowehavex(t) < B foranyt> 07

e If | start in the blue ball :
will | stay in the red ball? B Q

Stability of dynamical systems

* Alongstanding problem, that interested mathematicians for
centuries, and Netflix for months

“The bast Kind of £ ym

«\,-./

'PROBLE‘M‘*

Lyapunov functions
e Lyapunov (1892): if there exists V € C1(R", R), and for all
x € R™,
V(ix) > V(0)
lim V(x)= +oo

|xx|—>+00

Wi(x).f(x) <0,

A. Lyapunov
(1857-1918)

Then the system is globally stable
Start close to the origin => stay close to the origin

Barrier Lyapunov functions

The strict minimum in condition V(x) > V(0) can be
relaxed.

IfV(x) = V(0)
(keepmg hm V(x) = +oand VI (x). f(x) < 0),

|x|—>+ 00

Vis a barrier Lyapunov function: it defines a subspace
that a solution cannot leave

Start within the barrier => Stay within the barrier

Lyapunov functions

i?l = —1011:1

Model inference: Our model recovers V (z) = 10z3 + 2zox? + 3z + 622

Clearly V(0) = 0 and V(z) = 9(z0)* + (zo + x1)? + 2(z1)? + 627 > 0 for all z # 0. Also
VV . f=—x3(116x7 + 120) < 0.

Lyapunov functions

System Lyapunov function
To = —5z5 — 2T077 6 4 3 2 2
. Viz) = 6z + 7z + g + 10z5 + 8z
{:1:1 = —9:1:% -+ 33}%5{?1 — 4:17‘;' (z) 0 0 0 0 1
: 5 3 4 3
Ty = —xy — 4xy — Iroz] + 3T02Y 4 9 5
. Viz) = 9 3
{;I:l = —3zjz? — 10x3z, + 3ToT? — T2} () = 2 + 92 + 321
r.I'.g — —3117% + 311?01132 - 9:170
= —x} — b1 + 513 V(z) = z§ + Txdxs + 3x3 + dzozs + 327 + 223 + 1023
Ty = —923
\ 2 2
(g = —8zoxi — 10z]
{ 1 = —8z% + 3x7 — 8z V(z) = 4z3 — 2zqx? + 627 + 422 + 232
(To = —X9

Table 14: Some additional examples generated from our models.

Lyapunov functions

* No systematic way of finding V from f
* Or even to prove that V exists for a given f

Lyapunov functions: the state of the art

* No systematic method for finding Lyapunov functions

* Numerical methods exist for special cases
* nsmall, fa polynomial of low degree, V a sum of squares (SOS) of monomials

* SOSTOOLS: computationally intensive
 BUT: there are stable polynomial systems with no SOS Lyapunov function

(Ahmadi et al. 2011)
* Neural networks for a weaker problem: robustness with respect to

small perturbations

 FOSSIL, Neural Lyapunov,
* Provide a neural approximation of V for small perturbations

e Useful in robotics

Global Lyapunov functions

* The global case matters every time we want control over extreme
situations:
* Epidemiology
* Flood control
* Transportation

Global Lyapunov functions as an Al problem
(Alfarano, Charton, Hayat, 2024)

* Train a language model to predictV from f

* By presenting it with a lot of examples of fand V
* So that it learns to “translate” finto V

* And use it to suggest possible V for a given f

* We can do symbolic integration this way

 Compute symbolic integrals as well as Mathematica (Lample Charton
ICLR 2020)

* Why not Lyapunov functions?

Al for Lyapunov functions

1. Generate a lot of training examples: pairs of fand V

2. Encode fand V as sequences of “words” that a language model
can process

3. Train a language model to predictV from f

Then, once the modelis trained

4. Foragivenf, generate guesses of V
5. Testthe guesses, hope for the best

Al for Lyapunov functions — the easy stuff

2. Encode f and V as sequences of “words” that a language model
can process

» f is a system of n symbolic functions: {io = c08(2.120)(z1 + 2)
1 = sin(3z1 + 2)

* That can be represented as trees :

/\ ‘
* and enumerated as sequences: cos + /+\
% c0oS, *, 2.1, Xg, +, X, 2 >L x1/\2 £

sin, +, %, 3, X4, 2

Al for Lyapunov functions — the easy stuff

3. Train a model to predict f from V

* Atransformer model, with 8 layers and 640 dimensions

* Trained to predict the next word of V given f
* From f predict v,
* From (f, v,) predict v,
* Repeat until you predict and end-of-sequence token

* By minimizing the cross-entropy between the next token and its
correct value in the training set

e Start with random weights (model parameters), and adjust them when the
next token is incorrectly predicted, to improve model prediction

Al for Lyapunov functions — the easy stuff

4. Generate guesses of V
* Models predict probabilities of the next token
* Instead of one, predict the n most likely first token v,

* Predict the n most likely continuations v, You will have n?
sequences vyV,, keep the n most likely

* Repeat until EOS

Al for Lyapunov functions — the easy stuff

5. Test the guesses
* Decode the sequence representing V into a function

* Use numerical methods (or SMT solvers) to prove that Lyapunov
conditions hold :

* V(x) >V(0)
* lim V(x) = 4+

x| -+

e VW(x).f(x) <0,

* This is the only moment we use mathematical software
* We need a verifier, and may have false negatives

Generating pairs of fand V

In an ideal world, we would
1. generate arandom stable system f,
2. compute its Lyapunov function V with a solver,
3. add the pair (f,V) to the training set

Generate a stable system? We cannot even prove a system is stable

Compute the Lyapunov function? We only have solvers for the
simplest cases

The Backward method

* Instead of finding the solutions of random problems, let us find
the problems of random solutions

« Sample a functionV
* Construct a system f which has V as its Lyapunov function

Lyapunov functions

e Lyapunov (1892): if there exists V € C'(R", R), and for
allx € R™,

V(x) > V(0)
lim V(x) = +

|x| =+

VV(X)f(X) <0, A. Lyapunov
(1857-1918)

Then the system is globally stable

The Backward method

* Select arandom function V
 AC'function
 With a strict minimum in O
* Infinite at infinity

* Then find a random system f such that
W(x).f(x) <0

Constraints on backward methods

* We wantV, and f, as generic as possible

* We should sample V from the class of continuous function with a strict
minimum at 0, and infinite at infinity

* ForagivenV, f should be sampled from all functions such that
VW (x). f(x) < 0

* We want to select V and f from the largest possible class, with as
little bias as possible

Constraints on backward methods

* We want the modelto learn to solve the Lyapunov problem not to reverse the
generating procedure

* Suppose we compute (exactly) the real roots of polynomial with integer
coefficients

* Backward generation is tempting: you can easily generate a polynomial from
its roots

* e.g. P(x)=(x-2)(x-5)(x-7), for roots 2,5,and 7

* |[f the model is presented with the factorized form of polynomial P during
training, it will learn to “read” the roots in the polynomial, instead of solving it

* |f the modelis provided with the developed form P(x) = x3-14x%+59x-70, we are
solving the hard problem.

Constraints on backward methods

* We need to prevent the generation from “leaking” information
about the solution into the problem

* Naive methods will not work
* We need to obsfuscate our generation method

* We cannot guarantee the absence of such leaks (Yehudah 2020)

Generating V

* Vinfinite at infinity, with a strict minimum in zero
* No systematic way to sample functions with a strict minimum

* We rewrite V =Vioper T Veross »
eV has a strict minimum in zero and is infinite at infinity,

proper

* Vs IS NON-Nnegative and bounded

Generating V

* Specifically, for Vi pe We

.. . b;
* sample a positive polynomial P(x) = l] 1 al]xb X; 7 with a;; the entries of
a random positive definite matrix,

* apply a generic increasing function | (sampled in a large class)
* multiply by random positive functions

* V_..ss IS @ sSum of squares of bounded functions

o= [1(Serat) -ro). (zammx;:) i) + Snte e,

=1

Generating f fromV

Wewant VIV (x).f(x) <0,
f(x) = —VV(x) is an obvious solution

But a very bad one: finding V from f, now amounts to integrating f, we are
solving a different (and easier) problem!

We can modify this solutions by multiplying each coordinate by a
random positive function

fx) = =(h2()(VV(x)))),
we still verify VV (x). f(x) < 0, and integration of f no longer allows to
recover V

Generating f from V

f(x) = —h%2(x)VV(x) verifies VV (x). f(x) < 0, butitis not generic
enough

We can improve it by adding a random vector w(x), satisfying
w(x).VWV(x) =0

a vector w from the normal hyperplane H, = {w|w.VV = 0}, that can be
generated as

w(x) = X5 gi(x)e; (%),
with g, random functions and e, base vectors of H,

f(x) = (hl2 (x). (— VV(x))i) + w(x)

Generating f from V

f(x) = —h2(x)VV(x) verifies VV(x). f(x) < 0, butitis not generic
enough

A better candidate is f(x) = —h2(x)VV (x) + w(x), withw(x).VV(x) = 0

i.e. adding a vector w from the normal hyperplane H, = {w|w.VV = 0},
generated as

w(x) = Xy gi(x)ey(x),
with g random functions and e, base vectors of H,,

Generating f from V

But do not use Gram Schmidt to calculate e, And do not make the
base orthonormal!

If you do so, denominators of the form 1/||VV (x)|| will appear in the
expression of g;(x), and therefore in w(x).

And it is unlikely that they will simplify away.
This leaks information about V(x).

Go for a non orthonormal base, and make the e,(x) as simple as you
can.

Backward generation

Summarizing: we generate a function
V(X)= Vproper (X) + Vcross(x)

f(x) = (R (x)(— VWV (x));) + w(x)

that verifies the Lyapunov conditions

and a system

Generation depends on a number of random functions, by sampling
them in different families, we can constrain V and f to belong to
specific classes: e.g. polynomials

Lots of steps were taken to ensure that the generating procedure
does not leak information about V in f. But we have no guarantee.

The training sets

* We generate two backward datasets:
* BPoly: 1M backward generated polynomial systems of 2 to 5 equations

* BNonPoly: 1M backward generated non-polynomial systems: polynomials
of general functions (e.g. trigonometric polynomials)

* And use SOSTOOLS to generate two polynomial forward sets

* FLyap: 100,000 polynomial systems that SOSTOOLS can solve

* FBarr: 300,000 polynomial systems for which SOSTOOLS can find a
barrier Lyapunov function (V(x) is no longer strictly positive).

In-domain performance

* Models perform well on the distributions they were trained on
* For forward datasets, the model achieves SOTA performance

* But for backward sets, this proves nothing... The model might be
exploiting a gap in the generating procedure

Accuracy Accuracy
Backward datasets bs=1 bs=50 Forward datasets bs=1 bs=50
BPoly (polynomial) 99 100 FBarr (barrier) 93 98
BNonPoly (non-poly) 77 87 FLyap (Lyapunov) 81 388

Table 2: In-domain accuracy of models. Beam size (bs) 1 and 50.

Out-of-domain performance

* Test backward on forward, and forward on backward
* The model cannot cheat

* Forward models do not generalize

* Backward models generalize to polynomial systems, and even to
barrier systems (a slightly different problem)

Backward datasets FLyap FBarr || Forward datasets BPoly
BPoly (polynomial) 73 35 FBarr (barrier) 15
BNonPoly (non-poly) 75 24 FLyap (Lyapunov) 10

Table 3: Out-of-domain accuracy of models. Beam size 50. Columns are the test sets.

Priming for improved performance

* Models trained on Bpoly achieve 73% accuracy on Forward
generated polynomial test sets

* Part of the failures are due to the fact that the model was trained
on a different distribution of systems:
* OOD generalization is hard

* A similar problem happens when models trained on small
problems are tested on large problems
* addition of smallintegers, generalizing to large integers

* Priming (Jelassi 2023) was proposed as a solution to length
generalization: adding a tiny number of large integers to the
training set, greatly improves model performance.

Priming Lyapunov

* Adding a small number of problems with know solutions to the backward
training set (Bpoly) improves performance

* Adding 0.01% new examples

brings accuracy from 73 to 82% Forward Examples added

. Adding 0.03% examples from dataseits (1M in training set) | FLyap FBarr
FBarr brings accuracy on FLyap No mixture 0 73 35
to 83%, and accuracy on FBarr FBarr 30 75 61
to 89%. 300 83 89
, 3,000 85 93
* Few shot learning of a related 30,000 89 05
problgm (barrier Lyapunov FLyap 0 s s
funCthnS) 100) 29
1,000 83 37
10,000 86 38

Beating the state of the art

SOSTOOL Existing Al methods Models
Test sets findlyap | Fossil2 ANLC LyzNet | PolyMixture FBarr FLyap BPoly
FSOSTOOLS - 32 30 46 84 80 53 54
FBarr - 12 18 28 93 - 28 35
FLyap - 42 32 66 84 93 - 73
BPoly 15 10 6 24 99 15 10 -

Table 5: Performance comparison on different test sets. Beam size 50. PolyMixture is BPoly + 500 FBarr.

What have we learned so far?

* Models trained on backward datasets can generalize to generic
polynomial systems (that SOSTOOLS can solve)

* Priming improves performance, and allows generalization to
related tasks

* We do better than existing Al methods

* But we are only solving polynomial systems, that are already
known to be stable (because SOSTOOLS can solve them)

* Tout ca pour ca?

Into the wild

* Generate three test sets of random systems with a local minimum
In zero, but not guaranteed to be stable
* Poly3: polynomial systems of degree 2 and 3
* Poly5: polynomial systems of degree 2to 5
* NonPoly: non polynomial systems

* We expect bad performance: most of those systems will be
unstable (we don’t know how many)

Into the wild

* SOS Methods fail badly,
e some recent Al tools do better

Sample | SOSTOOL Existing Al methods
Test set s1ze findlyap | Fossil2 ANLC LyzNet
Poly3 65,215 1.1 0.9 0.6 4.3
Poly5 60,412 0.7 0.3 0.2 2.1
NonPoly 19,746 - 1.0 0.6 3.5

Into the wild

* Backward primed models achiece 10 to 12% accuracy on random
systems (even non polynomials)

* We have no way of knowing how good this is, because we do not
know how many systems have Lyapunov functions

* But this is encouraging

Sample | SOSTOOL Existing Al methods Forward model Backward model
Test set size findlyap | Fossil2 ANLC LyzNet FBarr PolyMixture = NonPolyMixture
Poly3 65,215 1.1 0.9 0.6 4.3 11.7 11.8 11.2
Poly5 60,412 0.7 0.3 0.2 2.1 8.0 10.1 9.9
NonPoly 19,746 - 1.0 0.6 3.5 - - 12.7

Table 6: Discovering Lyapunov comparison for random systems. Beam size 50. PolyMixture is BPoly +
500 FBarr. NonPolyMixture is BNonPoly + BPoly + 500 FBarr.

Priming in the wild

* We can bootstrap: use “wild examples” that the transformer can
solve to prime the training set.

* Adding 1000 wild examples to Bpoly, and fine-tuning the model on
this dataset (regenerating the test set to prevent contamination)
brings performance to 13.5% (vs 11.7) on Poly3 and 11.9 (vs 9.6)
on Poly5.

What about human mathematicians®?

While our models exceed the algorithmic state of the art, one might wonder how they compare to
human mathematicians. To this effect, we proposed 75 problems from the FSOSTOOLS datasets
(polynomial systems with 2 or 3 equations) as a examination for 25 first year Masters students in
mathematics, following a course on the subject. Each student was given 3 systems chosen at random

from FSOSTOOLS and had a total of 30 min. Their performance was 9.33%, significantly lower than
our models (84%).

Wondering out loud

* We managed to solve random problems in the wild

* We don’t know yet how to solve interesting problems

* Generation is the hard part, we need better, systematic
techniques for backward generation

 Backward generation is Out Of Distribution by design, but what
are those “distributions of problems”? We need a theory of this.

* Priming and bootstrapping definitely helps, we need to
understand this phenomenon

	Slide 1: Discovering global Lyapunov functions What does it take to solve a hard math problem?
	Slide 2: Local stability of dynamical systems
	Slide 3: Global stability of dynamical systems
	Slide 4: Stability of dynamical systems
	Slide 5: Lyapunov functions
	Slide 6: Barrier Lyapunov functions
	Slide 7: Lyapunov functions
	Slide 8: Lyapunov functions
	Slide 9: Lyapunov functions
	Slide 10: Lyapunov functions: the state of the art
	Slide 11: Global Lyapunov functions
	Slide 12: Global Lyapunov functions as an AI problem (Alfarano, Charton, Hayat, 2024)
	Slide 13: AI for Lyapunov functions
	Slide 14: AI for Lyapunov functions – the easy stuff
	Slide 15: AI for Lyapunov functions – the easy stuff
	Slide 16: AI for Lyapunov functions – the easy stuff
	Slide 17: AI for Lyapunov functions – the easy stuff
	Slide 18: Generating pairs of f and V
	Slide 19: The Backward method
	Slide 20: Lyapunov functions
	Slide 21: The Backward method
	Slide 22: Constraints on backward methods
	Slide 23: Constraints on backward methods
	Slide 24: Constraints on backward methods
	Slide 25: Generating V
	Slide 26: Generating V
	Slide 27: Generating f from V
	Slide 28: Generating f from V
	Slide 29: Generating f from V
	Slide 30: Generating f from V
	Slide 31: Backward generation
	Slide 32: The training sets
	Slide 33: In-domain performance
	Slide 34: Out-of-domain performance
	Slide 35: Priming for improved performance
	Slide 36: Priming Lyapunov
	Slide 37: Beating the state of the art
	Slide 38: What have we learned so far?
	Slide 39: Into the wild
	Slide 40: Into the wild
	Slide 41: Into the wild
	Slide 42: Priming in the wild
	Slide 43: What about human mathematicians?
	Slide 44: Wondering out loud

