
Discovering global Lyapunov 
functions 

What does it take to solve a hard math problem?
François CHARTON, Meta AI



Local stability of dynamical systems

• A dynamical system is a system of n equations in n variables, such 
that ሶ𝑥 = 𝑓 𝑥 , 𝑥 ∈ ℝ𝑛, 𝑓: ℝ𝑛 → ℝ𝑛

• At 𝑥0 such that 𝑓 𝑥0 = 0, the system is locally stable if all the 
(complex) eigenvalues of the Jacobian 𝜕𝑓𝑖

𝜕𝑥𝑗 (𝑖,𝑗)∈ℕ𝑛
2

have negative

real parts 

• Transformers can learn this (Charton, Hayat, Lample, ICLR 2021)



Global stability of dynamical systems

• Behavior around a stable equilibrium in ሶ𝑥0 = 0

• If 𝑥 𝑡 < 𝛿 for 𝑡 = 0, do we have 𝑥 𝑡 < 𝐵 for any 𝑡 > 0 ?

• If I start in the blue ball
will I stay in the red ball?



Stability of dynamical systems

• A longstanding problem, that interested mathematicians for 
centuries, and Netflix for months



Lyapunov functions

• Lyapunov (1892): if there exists 𝑉 ∈ 𝐶1 ℝ𝑛, ℝ , and for all 
𝑥 ∈ℝ𝑛,  

𝑉 𝑥 > 𝑉 0

lim
𝑥 →+∞

𝑉(𝑥) = +∞

∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0 , 

Then the system is globally stable 
Start close to the origin => stay close to the origin



Barrier Lyapunov functions

The strict minimum in condition 𝑉 𝑥 > 𝑉 0 can be 
relaxed. 

If 𝑉 𝑥 ≥ 𝑉 0

(keeping lim
𝑥 →+∞

𝑉(𝑥) = +∞ and ∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0),

V is a barrier Lyapunov function: it defines a subspace
that a solution cannot leave
Start within the barrier => Stay within the barrier



Lyapunov functions



Lyapunov functions



Lyapunov functions

• No systematic way of finding V from f
• Or even to prove that V exists for a given f



Lyapunov functions: the state of the art

• No systematic method for finding Lyapunov functions
• Numerical methods exist for special cases

• n small, f a polynomial of low degree, V a sum of squares (SOS)  of monomials
• SOSTOOLS: computationally intensive
• BUT: there are stable polynomial systems with no SOS Lyapunov function 

(Ahmadi et al. 2011)
• Neural networks for a weaker problem: robustness with respect to 

small perturbations
• FOSSIL, Neural Lyapunov, 
• Provide a neural approximation of V for small perturbations
• Useful in robotics



Global Lyapunov functions

• The global case matters every time we want control over extreme 
situations:
• Epidemiology
• Flood control
• Transportation



Global Lyapunov functions as an AI problem
(Alfarano, Charton, Hayat, 2024)

• Train a language model to predict V from f
• By presenting it with a lot of examples of f and V
• So that it learns to “translate” f into V
• And use it to suggest possible V for a given f

• We can do symbolic integration this way
• Compute symbolic integrals as well as Mathematica (Lample Charton 

ICLR 2020)

• Why not Lyapunov functions?



AI for Lyapunov functions

1. Generate a lot of training examples: pairs of f and V
2. Encode f and V as sequences of “words” that a language model 

can process
3. Train a language model to predict V from f

Then, once the model is trained

4. For a given f, generate guesses of V
5. Test the guesses, hope for the best



AI for Lyapunov functions – the easy stuff

2. Encode f and V as sequences of “words” that a language model 
can process
• f is a system of n symbolic functions: 

• That can be represented as trees : 
• and enumerated as sequences:

*, cos, *, 2.1, x0, +, x1, 2
sin, +, *, 3, x1, 2



AI for Lyapunov functions – the easy stuff

3. Train a model to predict f from V
• A transformer model, with 8 layers and 640 dimensions
• Trained to predict the next word of V given f

• From f predict v0

• From (f, v0) predict v1

• Repeat until you predict and end-of-sequence token

• By minimizing the cross-entropy between the next token and its 
correct value in the training set
• Start with random weights (model parameters), and adjust them when the 

next token is incorrectly predicted, to improve model prediction



AI for Lyapunov functions – the easy stuff

4. Generate guesses of V
• Models predict probabilities of the next token
• Instead of one, predict the n most likely first token v0

• Predict the n most likely continuations v1 You will have n2

sequences v0v1, keep the n most likely
• Repeat until EOS



AI for Lyapunov functions – the easy stuff

5. Test the guesses 
• Decode the sequence representing V into a function
• Use numerical methods (or SMT solvers) to prove that Lyapunov 

conditions hold :
• 𝑉 𝑥 > 𝑉 0

• lim
𝑥 →+

𝑉(𝑥) = +∞

• ∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0 , 

• This is the only moment we use mathematical software
• We need a verifier, and may have false negatives



Generating pairs of f and V

In an ideal world, we would 
1. generate a random stable system f, 
2. compute its  Lyapunov function V with a solver, 
3. add the pair (f,V) to the training set

Generate a stable system? We cannot even prove a system is stable
Compute the Lyapunov function? We only have solvers for the 
simplest cases



The Backward method

• Instead of finding the solutions of random problems, let us find 
the problems of random solutions

• Sample a function V
• Construct a system f which has V as its Lyapunov function 



Lyapunov functions

• Lyapunov (1892): if there exists 𝑉 ∈ 𝐶1 ℝ𝑛, ℝ , and for 
all 𝑥 ∈ ℝ𝑛,  

𝑉 𝑥 > 𝑉 0

lim
𝑥 →+

𝑉(𝑥) = +∞

∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0 , 

Then the system is globally stable



The Backward method

• Select a random function V 
• A C1 function
• With a strict minimum in 0
• Infinite at infinity

• Then find a random system f such that
∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0



Constraints on backward methods

• We want V, and f, as generic as possible
• We should sample V from the class of continuous function with a strict 

minimum at 0, and infinite at infinity 
• For a given V, f should be sampled from all functions such that 

∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0

• We want to select V and f from the largest possible class, with as 
little bias as possible



Constraints on backward methods

• We want the model to learn to solve the Lyapunov problem not to reverse the 
generating procedure

• Suppose we compute (exactly) the real roots of polynomial with integer 
coefficients

• Backward generation is tempting: you can easily generate a polynomial from 
its roots
• e.g. P(x)=(x-2)(x-5)(x-7), for roots 2,5,and 7

• If the model is presented with the factorized form of polynomial P during 
training, it will learn to “read” the roots in the polynomial, instead of solving it

• If the model is provided with the developed form P(x) = x3-14x2+59x-70, we are 
solving the hard problem.



Constraints on backward methods

• We need to prevent the generation from “leaking” information 
about the solution into the problem

• Naive methods will not work
• We need to obsfuscate our generation method

• We cannot guarantee the absence of such leaks (Yehudah 2020)



Generating V

• V infinite at infinity, with a strict minimum in zero
• No systematic way to sample functions with a strict minimum

• We rewrite V = Vproper + Vcross , 
• Vproper has a strict minimum in zero and is infinite at infinity, 
• Vcross is non-negative and bounded



Generating V

• Specifically, for Vproper, we 
• sample a positive polynomial P(x) = σ𝑖,𝑗=1

𝑛 𝑎𝑖,𝑗𝑥𝑖
𝑏𝑖𝑥

𝑗

𝑏𝑗 with ai,j the entries of 
a random positive definite matrix, 

• apply a generic increasing function I (sampled in a large class)
• multiply by random positive functions

• Vcross is a sum of squares of bounded functions



Generating f from V

We want ∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0, 
𝑓 𝑥 = − ∇𝑉 𝑥 is an obvious solution

But a very bad one: finding V from f, now amounts to integrating f, we are 
solving a different (and easier) problem!

We can modify this solutions by multiplying each coordinate by a 
random positive function

𝑓 𝑥 = −(ℎ𝑖
2(𝑥)(∇𝑉 𝑥) 𝑖),

we still verify ∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0, and integration of f no longer allows to 
recover V



Generating f from V

𝑓 𝑥 = −ℎ2(𝑥)∇𝑉 𝑥 verifies ∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0, but it is not generic 
enough

We can improve it by adding a random vector 𝑤 𝑥 , satisfying
𝑤 𝑥 . ∇𝑉 𝑥 = 0

a vector w from the normal hyperplane ℋ𝑥 = 𝑤 𝑤. ∇𝑉 = 0 , that can be 
generated as 

𝑤 𝑥 = σ𝑖=0
𝑛−1𝑔𝑖(𝑥)𝑒𝑖(𝑥), 

with gi random functions and ei base vectors of ℋ𝑥

𝑓 𝑥 = ℎ𝑖
2 𝑥 . (− ∇𝑉 𝑥) 𝑖 +𝑤 𝑥



Generating f from V

𝑓 𝑥 = −ℎ2(𝑥)∇𝑉 𝑥 verifies ∇𝑉 𝑥 . 𝑓 𝑥 ≤ 0, but it is not generic 
enough

A better candidate is 𝑓 𝑥 = −ℎ2 𝑥 ∇𝑉 𝑥 + 𝑤 𝑥 , with 𝑤 𝑥 . ∇𝑉 𝑥 = 0

i.e. adding a vector w from the normal hyperplane ℋ𝑥 = 𝑤 𝑤. ∇𝑉 = 0 ,
generated as 

𝑤 𝑥 = σ𝑖=0
𝑛−1𝑔𝑖(𝑥)𝑒𝑖(𝑥), 

with gi random functions and ei base vectors of ℋ𝑥



Generating f from V

But do not use Gram Schmidt to calculate e, And do not make the 
base orthonormal!
If you do so, denominators of the form 1/| ∇𝑉 𝑥 | will appear in the 
expression of ei(x), and therefore in w(x). 
And it is unlikely that they will simplify away.
This leaks information about V(x).

Go for a non orthonormal base, and make the ei(x) as simple as you 
can.



Backward generation

Summarizing: we generate a function
V(x)= Vproper (x) + Vcross(x)

and a system 
𝑓 𝑥 = ℎ𝑖

2 𝑥 (− ∇𝑉 𝑥) 𝑖 + 𝑤 𝑥
that verifies the Lyapunov conditions

Generation depends on a number of random functions, by sampling 
them in different families, we can constrain V and f to belong to 
specific classes: e.g. polynomials
Lots of steps were taken to ensure that the generating procedure 
does not leak information about V in f. But we have no guarantee.



The training sets

• We generate two backward datasets:
• BPoly: 1M backward generated polynomial systems of 2 to 5 equations
• BNonPoly: 1M backward generated non-polynomial systems: polynomials 

of general functions (e.g. trigonometric polynomials)

• And use SOSTOOLS to generate two polynomial forward sets
• FLyap: 100,000 polynomial systems that SOSTOOLS can solve
• FBarr: 300,000 polynomial systems for which SOSTOOLS can find a 

barrier Lyapunov function (V(x) is no longer strictly positive).



In-domain performance

• Models perform well on the distributions they were trained on
• For forward datasets, the model achieves SOTA performance
• But for backward sets, this proves nothing... The model might be 

exploiting a gap in the generating procedure



Out-of-domain performance

• Test backward on forward, and forward on backward
• The model cannot cheat
• Forward models do not generalize
• Backward models generalize to polynomial systems, and even to 

barrier systems (a slightly different problem) 

•



Priming for improved performance

• Models trained on Bpoly achieve 73% accuracy on Forward 
generated polynomial test sets

• Part of the failures are due to the fact that the model was trained 
on a different distribution of systems: 
• OOD generalization is hard

• A similar problem happens when models trained on small 
problems are tested on large problems 
• addition of small integers, generalizing to large integers

• Priming (Jelassi 2023) was proposed as a solution to length 
generalization: adding a tiny number of large integers to the 
training set, greatly improves model performance.



Priming Lyapunov

• Adding a small number of problems with know solutions to the backward 
training set (Bpoly) improves performance

• Adding 0.01% new examples 
brings accuracy from 73 to 82%

• Adding 0.03% examples from 
FBarr brings accuracy on FLyap
to 83%, and accuracy on FBarr
to 89%. 

• Few shot learning of a related 
problem (barrier Lyapunov
functions) 



Beating the state of the art



What have we learned so far?

• Models trained on backward datasets can generalize to generic 
polynomial systems (that SOSTOOLS can solve)

• Priming improves performance, and allows generalization to 
related tasks

• We do better than existing AI methods

• But we are only solving polynomial systems, that are already 
known to be stable (because SOSTOOLS can solve them)

• Tout ça pour ça?



Into the wild

• Generate three test sets of random systems with a local minimum 
in zero, but not guaranteed to be stable
• Poly3: polynomial systems of degree 2 and 3
• Poly5: polynomial systems of degree 2 to 5
• NonPoly: non polynomial systems

• We expect bad performance: most of those systems will be 
unstable (we don’t know how many)



Into the wild

• SOS Methods fail badly, 
• some recent AI tools do better



Into the wild

• Backward primed models achiece 10 to 12% accuracy on random 
systems (even non polynomials)

• We have no way of knowing how good this is, because we do not 
know how many systems have Lyapunov functions

• But this is encouraging



Priming in the wild

• We can bootstrap: use “wild examples” that the transformer can 
solve to prime the training set.

• Adding 1000 wild examples to Bpoly, and fine-tuning the model on 
this dataset (regenerating the test set to prevent contamination) 
brings performance to 13.5% (vs 11.7) on Poly3 and 11.9 (vs 9.6) 
on Poly5.



What about human mathematicians?



Wondering out loud

• We managed to solve random problems in the wild 
• We don’t know yet how to solve interesting problems

• Generation is the hard part, we need better, systematic 
techniques for backward generation

• Backward generation is Out Of Distribution by design, but what 
are those “distributions of problems”? We need a theory of this.

• Priming and bootstrapping definitely helps, we need to 
understand this phenomenon 


	Slide 1: Discovering global Lyapunov functions  What does it take to solve a hard math problem?
	Slide 2: Local stability of dynamical systems
	Slide 3: Global stability of dynamical systems
	Slide 4: Stability of dynamical systems
	Slide 5: Lyapunov functions
	Slide 6: Barrier Lyapunov functions
	Slide 7: Lyapunov functions
	Slide 8: Lyapunov functions
	Slide 9: Lyapunov functions
	Slide 10: Lyapunov functions: the state of the art
	Slide 11: Global Lyapunov functions
	Slide 12: Global Lyapunov functions as an AI problem       (Alfarano, Charton, Hayat, 2024)
	Slide 13: AI for Lyapunov functions
	Slide 14: AI for Lyapunov functions – the easy stuff
	Slide 15: AI for Lyapunov functions – the easy stuff
	Slide 16: AI for Lyapunov functions – the easy stuff
	Slide 17: AI for Lyapunov functions – the easy stuff
	Slide 18: Generating pairs of f and V
	Slide 19: The Backward method
	Slide 20: Lyapunov functions
	Slide 21: The Backward method
	Slide 22: Constraints on backward methods
	Slide 23: Constraints on backward methods
	Slide 24: Constraints on backward methods
	Slide 25: Generating V
	Slide 26: Generating V
	Slide 27: Generating f from V
	Slide 28: Generating f from V
	Slide 29: Generating f from V
	Slide 30: Generating f from V
	Slide 31: Backward generation
	Slide 32: The training sets
	Slide 33: In-domain performance
	Slide 34: Out-of-domain performance
	Slide 35: Priming for improved performance
	Slide 36: Priming Lyapunov
	Slide 37: Beating the state of the art
	Slide 38: What have we learned so far?
	Slide 39: Into the wild
	Slide 40: Into the wild
	Slide 41: Into the wild
	Slide 42: Priming in the wild
	Slide 43: What about human mathematicians?
	Slide 44: Wondering out loud

