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Sagittarius A* (Sgr A*): Black Hole at the Center of the Milky Way
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“The Event Horizon Telescope Collaboration

Over 300 Scientists from 80 institutes in countries spanning
Europe, Asia, Africa, North and South America

(along with ~23K Community Contributors from'Open-Source Projects)
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Data Driven Priors Recovering 3D Dynamics
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The Event Horizon Telescope (EHT)

Black Hole Image Frequency Measurements
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‘ Solving for the Black Hole Image
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Solving for the Black Hole Image

B Unlikely More Likely Very Likely /
-N‘ 1 Find an image that is both :
0 nt with the data & looks like an image



True Image

Reconstruction

Solving for the Black Hole Image

Unlikely

More Likely

ALGORITHM

=03

Very Likely

O’\%*
Sparse ><$
Measurements

Y

c%)

(@)




Regularized Maximum Likelihood

Best Image

/\ image measurements
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Xuar = argmax,, [log p(x|y)]



Regularized Maximum Likelihood
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Imaging Pipelines

DIFMAP
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“The Event Horizon Tele how compelling evidence
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Ring size perfectly agrees with prior observations & theory!
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Sagittarius A* (Sgr A*) M87*

6.5 billion solar masses

4 million solar masses
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How to increase spatial resolution?
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To increase spatial resolution (e.g., lower angular resolution) ....

....we would have to go to space
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Assuming Weak Image Structure
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Event Horizon Telescope Collaboration, 2022
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Assuming Weak Image Structure
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Event Horizon Telescope Collaboration, 2022
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Assuming Data Driven Priors

%seore—based prior

Feng, et al, ICCV, 2023
Feng, et al, ApJ, 2023 (in submission)
Wy, et al, 2024 (in submission)

ﬂvolving Volume Reconstructioﬁ

by Assuming General Relativity
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Levis*, Srinivasan®, et al, CVPR, 2022
Levis, et al, Nature Astronomy, 2024
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Assuming Data Driven Priors

%score—based prior
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Increasingly Strong Assumptions
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ABSTRACT

Diffusion models have been recently studied as powerful generative inverse problem
solvers. owing to their high quality reconstructions and the ease of combining exist-

ing iterative solvers. However, most works focus on solving simple linear inverse
problems in noiseless settings, which si s the comp

of real-world problems. In this work, we extend diffusion solvers to efficiently han-

dle general noisy (non)linear inverse problems via approximation of the posterior
sampling. Interestingly, the resulting posterior sampling scheme is a blended ver-
sion of diffusion sampling with the manifold constrained gradient without a strict
measurement consistency projection step. yielding a more desirable generative path
in noisy settings compared to the previous studies. Our method demonstrates that
diffusion model various noise statistics such as Gaus-

sian and Poisson, and also efficiently handle noisy nonlinear inverse problems such
as Fourier phase retrieval and non-uniform deblurring. Code is available at ht tps :
//github.com/DPS2022/diffusion-posterior-sampling.

1 INTRODUCTION

Diffusion models learn the implicit prior of the underlying data distribution by matching the gradient
of the log density (i.c. Stein score; V. log p()) (Song et al., 2021b). The prior can be leveraged
when solving inverse problems, which aim to recover & from the measurement y, related through the
forward measurement operator A and the detector noise . When we know such forward models,
one can incorporate the gradient of the log likelihood (i.c. V., log p(y|x)) in order to sample from
osterior distribution p(z|y). While this looks straightforward, the likelihood term is in fact

analytically intractable in terms of diffusion models. due to their dependence on time ¢. Due to its
intractability, one often resorts to projections onto the measurement subspace (Song et al.. 2021b;
Chung et al Chung & Ye. Choi et al., 2021). However, the projection-type approach
fails dramatically when 1) there is noise in the measurement, since the noise is typically amplified
during the generative process due to the ill-posedness of the inverse problems; and 2) the measurement
process is nonlincar.

One line of works that aim to solve noisy inverse problems run the diffusion in the spectral do-
main (Kawar et al., 2021; 2022) so that they can tie the noise in the measurement domain into the
spectral domain via singular value ion (SVD). the of SVD is
costly and even prohibitive when the forward model gets more complex. For example, Kawar et al.
(2022) only considered seperable Gaussian kerels for deblurring, since they were restricted to the
family of inverse problems where they could effectively perform the SVD. Hence, the applicability of
such methods is restricted, and it would be useful to devise a method to solve noisy inverse problems
without the computation of SVD. Furthermore, while diffusion models were applied to various inverse
problems including inpainting (Kadkhodaie & Simoncelli, 2021 Song et al.. 2021b; Chung et al..
2022b; Kawar et al., 2022 Chung et al., 2022a), super-resolution (Kadkhodaie & Simoncelli, 2021:
Choi et al., 2021: Chung et al.. 2022b; Kawar et al., 2022), colorization (Song et al., 2021b: Kawar
etal., 2022; Chung et al., 2022a), compressed-sensing MRI (CS-MRI) (Song et al., 2022: Chung &
Ye, 2022: Chung et al.. 2022b). computed tomography (CT) (Song et al.. 2022; Chung et al., 2022a).
et.. 1o our best knowledge, all works so far considered lincar inverse problems only. and have not
explored nonlinear inverse problems.
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Reverse Denoising Process:
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Conditional Diffusion Models

Unconditional reverse diffusion

dx; = [f()x + g(©)*V1ogp. (x)] + g(t)dw,
Conditional reverse diffusion

dx, = [f()x; + g(©)*V1ogp, (x¢|y)] + g(t)dw,
l Bayes rule
dxe = [f(E)x, + g(t)ZVlog pt(xt) + g(t)ZVIOg pt(ylxt)] + g(t)dw,

—~ —~

Unconditional score Likelihood at time t

Pre-trained diffusion models Intractable in general



‘Plug-and-quy Diffusion Models (PnP-DM)
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Sample the Bayesian Posterior

p(xly) < p(ylx) p(x)
N

image measurements



Sample the Bayesian Posterior

p(x|y) p(ylx) p(x)

g $

= exp(logp(y[x)) exp(logp(x))
) Combining the exponents

= exp(logp(y|x) +logp(x))



Splif Gibbs Sdmplel’ (SGS) [Vono, et al, 2019]

p(x|y) p(ylx) p(x)
¥ \

= exp(logp(y|x)) exp(logp(x))

= exp(logp(y|x) +logp(x) )
j Introduce z
1

= exp(logp(yl2) +1logp(x) — ;= lx —zl3) as p—0



Splif Gibbs SCImp|eI’ (SGS) [Vono, et al, 2019]

1
p(xly) «c exp(logp(ylz) +logp(x) — —=lx —zI;) as p—0
Alternate Between 2 Steps:

Likelihood Step: fix x , sample z

Prior Step: fix z , sample x



Splif Gibbs SCImp|eI’ (SGS) [Vono, et al, 2019]

constant

1
p(xly) « exp(logp(y|2) +logp(x) — = lx —zI5) as p—=0

Alternate Between 2 Steps:

Likelihood Step: fix x , sample z

Prior Step: fix z , sample x



Split Gibbs Sampler (SGS) : the Prior Step

constant

p(x|y) x exp(log z) +logp(x) — !

rlx—z3) as p-0

Alternate Between 2 Steps:

Likelihood Step: fix x , sample z

Prior Step: fix z , sample x



Split Gibbs Sampler (SGS) : the Prior Step

1
exp( logp(x) — 77
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prior denoising

measurement
likelihood

lx —z|3)

Prior Step: fix z , sample x

Equivalent to sampling the posterior in a denoising problem

with measurement z and noise standard deviation of p!



‘EDM Diffusion Model Rigorously Solves Prior Step
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Large p > nearly image generation Small p = image denoising
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‘EDM Diffusion Model Rigorously Solves Prior Step

start from ¢] at
noise level p;
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Large p > nearly image generation Small p = image denoising
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‘Plug-cmd-quy Diffusion Model (PnP-DM)

iteration O

iteration 1

start from ¢ at
noise level pg
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iteration K-1

—
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- I:- u

I:- Likelihood step: enforcing
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I:- Prior step: denoising with
noise level p,

{pr} Annealing schedule




Real Data Reconstruction using Black Hole Prior

|« Posterior samples ]

Mean image Official image by EHT

Experiment is performed with real data for the M87 black hole with non-convex constraints
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Assuming Data Driven Priors

%seore—based prior

Assuming Weak Image Structure
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ﬁvolving Volume Recons'rruc'riom

by Assuming General Relativity
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Levis*, Srinivasan®, et al, CVPR, 2022
Levis, et al, Nature Astronomy, 2024
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Traditional vs Black Hole Tomography
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Traditional vs Black Hole Tomography
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Computed Tomography (CT)
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Gravitational Lensing Black Hole Emission Tomography
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Gravitational Lensing Black Hole Emission Tomography

Aviad Levis Pratul Srinivasan Andrew Chael

Levis*, Srinivasan®, et al, CVPR, 2022

Levis, et al, Nature Astronomy, 2024



‘ Gravitational Lensing Black Hole Emission Tomography

EHT Measurements

Neural Network

Levis*, Srinivasan®, et al, CVPR, 2022
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Galactic Center on April 1.1.'.Explosive Day

emission hotspots




ALMA lightcurves
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The Black Hole Lightcurve

Evolving Evolving
3D Emission 2D Projection

Measurements

“Lightcurve” :
integrate image to form
a single pixel video



The Polarized Black Hole Lightcurve
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Black Hole Flare Tomography
/ Measurements \
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Black Hole Flare Tomography
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‘ Black Hole Flare Tomography \ X
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Levis, et al, Nature Astronomy, 2024



‘ Black Hole Flare Tomography
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Levis, et al, Nature Astronomy, 2024



‘ Sgr A* Tomography Reconstruction (Real Datal)
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Sgr A* Tomography Reconstruction (Real Data!)

Fixed at Time 9:20 UT

Levis, et al, Nature Astronomy, 2024



‘ Sgr A* Tomography Reconstruction (Real Datal)

Ph 5sics

Strong Physical Constraints

Progression over 100 minutes

Levis, et al, Nature Astronomy, 2024
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The 2-Way Street Between Science and Algorithms
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The 2-Way Street Between Science and Algorithms

Mapping Black Hole Hotspots
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‘ The 2-Way Street Between Science and Algorithms

Mapping Black Hole Hotspots

Gravitationally Lensed Neural Field




The 2-Way Street Between Science and Algorithms

Mapping Black Hole Hotspots

Gravitationally Lensed Neural Field

Dark Matter Tomography



Revealing the 3D Cosmic Web
through Gravitationally Constrained Neural Fields

!

Brandon Zhao Aviad Levis Liam Connor Pratul P. Srinivasan

Zhao, et al, CVPR, 2024

Zhao, et al, in prep
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‘ The Elliptical Parameterization of Galaxies
To describe an ellipse, define its complex ellipticity:
e = eq tle,

Where the magnitude and phase determine its axis ratio r and orientation angle ¢:
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Estimates are Noisy: “Shape Noise”

“Intrinsic” Shape Estimated Shape Shape Noise

Cint Cint o € where e ~ N (0, Ushape)

VYmeas = €obs — €int




Estimates are Noisy: “Shape Noise”

“Intrinsic” Shape Estimated Shape Shape Noise

Cint Cint o € where e ~ N (0, Ushape)

Ymeas = €obs— (eint - E)




Estimates are Noisy: “Shape Noise”

“Intrinsic” Shape Estimated Shape Shape Noise

€int o € where e ~ N (0, Ushape)

€int

Ymeas = €obs— €int T € = y(p)+ €




Galaxy Catalog
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Mass Density Neural Field

| (61,62,2)

p(61,6,2)
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Zhao, et al, in prep
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The 2-Way Street Between Science and Algorithms
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“The Event Horizon Telescope Collaboration

Over 300 Scientists from 80 institutes in countries spanning
Europe, Asia, Africa, North and South America

(along with ~23K Community Contributors from'Open-Source Projects)
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