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Why String Theory?
• On googling “why string theory?”, you may find the following image
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This book is by Joe Conlon. What are his recent publications?



Why String Theory?
• String Dualities & holography have allowed calculations of strongly coupled theories


• Microstate counting for black hole entropy -> matches Hawking


• Intricate connections to Mathematics - e.g. Mirror symmetry


• String theory IS a theory of quantum gravity - is it the right one?


• It contains non-abelian gauge theories and chirality - the basis of particle physics


• At low energies, and large scales, the gravity theory is Einstein gravity
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String Theory
• Particles are replaced with various 

extended objects called branes.


• There are five different limits of string 
theory the theory, where the universe 
is perturbatively described by one 
dimensional objects called strings in 
10 dimensions


• In other limits the universe appears to 
be well described by 11D supergravity
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The focus of this talk



String Theory
• The obvious problem: String theory exists in 10 (11) dimensions


• We need initial conditions (i.e. We need to specify a 10D geometry)


• Compactifications:


• Different choices of M6, and field profiles of it, lead to different 4D Physics 


• We will make use of supersymmetry - this is not to say we have low energy SUSY


• For our purposes, this will mean that M6 is a Calabi-Yau manifold (CY 3-fold)

ℒΛ
eff
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M10 = ℝ1,3 × M6
V6→0 ℝ1,3 S = ∫M10

d10xℒ ≈ V6 ∫ℝ1,3

d4x [ℒΛ
eff + 𝒪 (ΛV1/6
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(Quasi-)Topological ~ Particle Spectrum (First part of talk) 

Geometric ~ Coupling constants (Second part of talk)



The recipe for a string compactification
• Aim: Particle Spectrum, Yukawa couplings, and Stabilise Moduli


• For the heterotic string, we have gauge fields A charged under E8 X E8 


• We need a Calabi-Yau manifold for N=1 SUSY in 4D


• We need a vector bundle V over the Calabi-Yau for N=1 SUSY in 4D


• The structure group of this vector bundle determines the low energy gauge 
group


• E8 ⊃ SU(5) × SU(5), SU(4) × SO(10), SU(3) × E6
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These are the standard GUT Groups

Broken the SM by appropriate Wilson line



The recipe for a string compactification

CY Manifold


Gauge Bundle


Wilson Line
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Topology (Discrete Data)

Low Energy Massless Spectrum

(Discrete Data of theory)


(Cohomology)
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Low Energy Couplings

(Continuous Data of Theory)



Why Machine Learning and String Theory?
TLDR: String Theory has big data 

Number of (known) Calabi-Yau Manifolds ~ 10400


Approximate Number of Perturbative Flux vacua in IIB ~ 10500


Extension to Strong Coupling ~ 10272,000


This data is also clean!


Pure mathematics with zero noise
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(Chandra et al 2023 & Gender et al 2023)

(Ashok and Douglas 2004)

(Taylor and Wang 2015)



Why Machine Learning and String Theory?

• Focus on spectrum for now


• To work out particle spectrum in 4D need (integer) topological data about the 
manifold and field profiles of it


• Incredibly hard to identify the few constructions of phenomenological interest!
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Geometric Data 4D Theory

Highly complicated map

Requiring computational algebraic geometry

?????

TLDR: String Theory has an inverse problem



Why Machine Learning and String Theory?

Large Datasets: c.f. Previous slide - conjecture generation


Discrete Optimisation: What compactifications lead to the standard model?


Solving PDEs: Solving 6D Einstein equations, CY metrics and field profiles. 
Allows calculation of Yukawa couplings
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Geometrically Engineering the SM with RL
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Building Bundles on Calabi-Yau Manifolds
• What Geometric Data?


• Fix a given CY manifold


• Monad Bundles - Non-abelian bundles formed from line bundles


• A line bundle are specified by its first Chern class - a vector of integers


• Therefore monad bundles are specified by large numbers of integers


• Aim: Find the MSSM with from Monad Bundle over a CY


• (An aside: Not the “standard embedding” - not so great for phenomenology)

12



• Essentially only one known model before this


• On the “bicubic”: 


• 


• Rank (6,2) monad -> rank 4 bundle -> SU(4) bundle -> SO(10) GUT in 4D

0 → V → 𝒪X(1,0)3 ⊕ 𝒪X(0,1)3 → 𝒪X(1,1) ⊕ 𝒪X(2,2) → 0

Reinforcement Learning and Monad Bundles
Monads and Non-Abelian Bundles
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Long time to calculate - easier  
to just check index during training

(Anderson et al 2011)



Background
Computation - Reinforcement Learning (RL) - Schematic

14 Image Credit: Andre Lukas



Background
Computation - Reinforcement Learning (RL) - Toy Example for Searching

• Find line bundles with with target index τ (=18) on bicubic


• Solving a cubic Diophantine equation in two variables


• Environment: Space of line bundles (2D integer lattice)


• Action: Move one space in lattice


• Intrinsic state value: 


• Reward: 
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Background
Computation - Reinforcement Learning (RL) - Toy Example
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Reinforcement Learning and Monad Bundles
Encoding for RL

• Environment: monads on given CY3 (large lattice) 


• Actions: Move two spaces in the lattice


• Intrinsic state value: next page


• How close to MSSM realisation?


• Reward: 
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Reinforcement Learning and Monad Bundles
Encoding for RL

Intrinsic state value:


We check cohomology 
constraints on the terminal 
states found during 
training, along with a 
better stability check
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Reinforcement Learning and Monad Bundles
Training
Bicubic - (6, 2) monads - this is the same space as the known model


b = -3…5 & c = 0… 5 -> 10^13 states in total


After removing redundancies (and extra checks), the known model is the only 
example without negative line bundle entries 


After ~1 hour on a single CPU, we find ~15 models (after extra checks)
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Reinforcement Learning and Monad Bundles
What is the Network doing?
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Appears to solve inequalities first 



Pushing to Saturation
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Found after further cohomology checks (35 genuine (6,2) Monads)

Found similar success with genetic algorithms for discrete optimisation

Also have O(500) models on triple tri-linear



Comparison to searches
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We also have found similar success with genetic algorithms and environments up to ~10^28



Calculating Quark Masses from String Theory
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Yukawa Couplings in String Theory
• Couplings require information about geometry (not just topology)


• This involves finding the metric on the Calabi-Yau and other field profiles


• i.e. Solve the 6D Einstein equations, coupled to matter! Very hard


• Have recently managed to do this with these line bundle sums! This also 
involved machine learning methods, where the metric and fields are 
represented by NNs, and the loss function is made from the PDEs


• First calculation of this kind - made possible by ML!
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Why do you need geometry now?
• Fields are not canonically normalised in a string compactifications


• ℒ = − Kij̄ ψ̄ jγμDμψ − Kij̄ Dμϕ̄ jDμϕ − (λijkϕiψ jψk + h . c.) + . . .
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Field space metric Holomorphic Yukawa Couplings

KIJ ∼ ∫CY
νI ∧ ⋆VνJ λIJ ∼ ∫CY

νI ∧ νJ ∧ νK

Hodge Star - Depends on the Metric!



What is v?
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△10 ϕ(x, y) = ( △4 + △6 )ϕ(x, y) ϕ(x, y) = ∑
I

φI(x)νI(y), △6 νI(y) = m2
I νI(y)

△4 ϕn(x) + m2
nϕn(x) = 0

We only want the zero modes              The derivative is the gauge and gravity covariant derivative

Metric Gauge Field Harmonic formsGeometry:

KIJ ∼ ∫CY
νI ∧ ⋆VνJ λIJ ∼ ∫CY

νI ∧ νJ ∧ νK



The String Model

27

Hypersurface in A = ℙ1 X ℙ1 X ℙ1 X ℙ1 ~ S2 X S2 X S2 X S2

This model has the MSSM Particle Content + Uncharged Moduli 

No extra vector-like pairs or chiral exotica

SU(5) Like structure but no GUT phase

Yu ∼ [
0 0 *
0 0 *
* * 0 ] Yd ∼ [

0 0 0
0 0 0
0 0 0]

First Calculation of its kind! Proof of concept - do not expect realistic results



Equations to Solve
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Correction to a reference metric:

Correction to a reference connection on each line bundle:

Correction to a reference 1-form for each field:

φ and β are functions while σ is a section. They need to transform appropriately - imposed with architecture


For the up Yukawas, we need 11 NNs in total

A = H−1∂̄H

This is called the Monge-Ampere equation.

It is equivalent to the vacuum Einstein equations for our purposes



(Equivariant) Projective Neural Networks
“A tensor is something that transforms like a tensor!”
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Functions: 

Sections: 

ℙ1 =
ℂ2 − 0⃗

ℂ*
⇒ [x, y] = [λx, λy] ∀λ ∈ C *

These generalise to P14 and higher dimension projective spaces

f(λx, λy) = f(x, y)

σ ∈ 𝒪ℙ1
(n) ⇒ σ(λx, λy) = λnσ(x, y)

πθ : [x, y] → [ xȳ
|x |2 + |y |2 ,

xx̄
|x |2 + |y |2 ,

yȳ
|x |2 + |y |2 ] → ⋯feed-forward network⋯ → ℝ

n = 2 πθ : [x, y] → [ xȳ
|x |2 + |y |2 ,

xx̄
|x |2 + |y |2 ,

yȳ
|x |2 + |y |2 ] → ⋯feed-forward network⋯ → ℝ6 → (a, b, c) ∈ C3 → ax2 + bxy + cy2



Training
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Topological obstruction to solving EOM

Topological allowed to solve EOM

All satisfy the EOM to within a few percent

(This is the error on the formal correction)



Results
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From model structure, will always 
have one massless quark


From choice of one-parameter family 
of moduli two remaining masses are 

equal


We checked that this degeneracy is 
lifted for other choices of moduli


Statistically ~1% error


Reference quantities are 
unexpectedly very close (~10% error)



Conclusions
• Methods from data science allow for searches for interesting string vacua


• RL can be used to Engineer string vacua with specific properties


• In our case to lead to the the MSSM


• Starts finding examples after exploring 10-7 of the environment


• These methods can be applied more broadly to large landscapes in physics


• Solve Einstein’s equations and Yang-Mills equations in 6D


• NNs represent solutions


• Can use this to calculate previously inaccessible quantities
32


