H Bl Massachusetts
I I I Institute of
Technology

Navigating the String Landscape
with Machine Learning Techniques

Thomas Harvey
JAIFI Colloquium, Sept 2024

In collaboration with
Steve Abela, Andrei Constantin?, Cristofero Fraser-Talientec¢, Andre Lukasd, Burt Ovrute

Based on
2108.07316rd, 2110.140292bd, 2111.07333akd, 2402.01615bcde | 241(0.xxxxbcde

1



Why String Theory?

* On googling “why string theory?”, you may find the following image




Why String Theory?

* On googling “why string theory?”, you may find the following image
This book is by Joe Conlon. What are his recent publications?

A Note on 4d Kination and Higher-Dimensional Uplifts

Fien Apers (Oxford U., Theor. Phys.), Joseph P. Conlon (Oxford U., Theor. Phys.), Marti
(Sep 12, 2024)

e-Print: 2409.08049 [hep-th]

pdf [= cite @ claim [

Percolating Cosmic String Networks from Kination

Joseph P. Conlon (Oxford U., Theor. Phys.), Edmund J. Copeland (Nottingham U.), Edw
Noelia Sdnchez Gonzalez (Oxford U., Theor. Phys.) (Jun 18, 2024)

e-Print: 2406.12637 [hep-ph]

pdf [= cite @ claim [

String Theory and the Early Universe: Constraints and Opportunities
Joseph P. Conlon (Oxford U., Theor. Phys.) (May 29, 2024)
Contribution to: Moriond Cosmology 2024 - e-Print: 2405.19118 [astro-ph.CO]

pdf [= cite [ claim

Out of the dark: WISPs in String Theory and the Early Universe

Joseph P. Conlon (Feb 1, 2024)
Published in: PoS COSMICWISPers (2024) 001 - Contribution to: COSMICWISPers, 00

pdf ¢ DOI [= cite @ claim [

String theory and the first half of the universe

Fien Apers (Oxford U., Theor. Phys.), Joseph P. Conlon (Oxford U., Theor. Phys.), Edmt
Martin Mosny (Oxford U., Theor. Phys.), Filippo Revello (Utrecht U.) (Jan 8, 2024)

Published in: JCAP 08 (2024) 018 - e-Print: 2401.04064 [hep-th]

[A pdf 2 _DOI [S cite [ claim =




Why String Theory?

o String Dualities & holography have allowed calculations of strongly coupled theories
 Microstate counting for black hole entropy -> matches Hawking

* |ntricate connections to Mathematics - e.g. Mirror symmetry

o String theory IS a theory of quantum gravity - is it the right one?

e |t contains non-abelian gauge theories and chirality - the basis of particle physics

At low energies, and large scales, the gravity theory is Einstein gravity
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String Theory

* Particles are replaced with various
extended objects called branes.

* There are five different limits of string
theory the theory, where the universe
IS perturbatively described by one

dimensional objects called strings In
10 dimensions

* |n other limits the universe appears to
be well described by 11D supergravity
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The focus of this talk



String Theory

The obvious problem: String theory exists in 10 (11) dimensions

We need initial conditions (i.e. We need to specify a 10D geometry)

Compactifications:

— 10 ~ 4 A 1/6
S—J d ngV6J dxgeff+@(/\v )
M R!3 :

M, = R'3 x M, 225 R1S

Different choices of Me, and field profiles of it, lead to different 4D Physics fZé}f

We will make use of supersymmetry - this is not to say we have low energy SUSY

For our purposes, this will mean that Mg is a Calabi-Yau manifold (CY 3-fold)



String Theory

The obvious problem: String theory exists in 10 (11) dimensions

We need initial conditions (i.e. We need to specify a 10D geometry)

Compactifications:
General rule

(Quasi-)Topological ~ Particle Spectrum (First part of talk)
Geometric ~ Coupling constants (Second part of talk)

Different choices of Me, and field profiles of it, lead to different 4D Physics Eé}f

We will make use of supersymmetry - this is not to say we have low energy SUSY

For our purposes, this will mean that Mg is a Calabi-Yau manifold (CY 3-fold)



The recipe for a string compactification

 Aim: Particle Spectrum, Yukawa couplings, and Stabilise Modull

* For the heterotic string, we have gauge fields A charged under Es X Es
* We need a Calabi-Yau manifold for N=1 SUSY in 4D

* We need a vector bundle V over the Calabi-Yau for N=1 SUSY in 4D

* The structure group of this vector bundle determines the low energy gauge
group

. Eg D SU(5) x SU(5), SU(4) x SO(10), SU(3) X E,

\ These are the standard GUT Groups /

Broken the SM by appropriate Wilson line

6



The recipe for a string compactification

Topology (Discrete Data)

CY Manifold

Gauge Bundle

Wilson Line

Low Energy Massless Spectrum
(Discrete Data of theory)
(Cohomology)
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The recipe for a string compactification

Topology (Discrete Data) Geometry (Solutions to PDESs)
: Equations of Motion
CY Manifold (PDEs in 6D) Metric guv
Gauge Bundle — Gauge
, , Unique Solution Connection AH
Wilson Line 1. Yau’s Theorem

2. Donaldson-Uhlenbeck-Yau Theorem

Low Energy Massless Spectrum
(Discrete Data of theory)
(Cohomology)

Low Energy Couplings
(Continuous Data of Theory)



Why Machine Learning and String Theory?

TLDR: String Theory has big data

Number of (known) Calabi-Yau Manifolds ~ 10400  (Chandraetal 2023 & Gender et al 202)
Approximate Number of Perturbative Flux vacua in [IB ~ 10900 ashokand bougias 2004

Extension to Strong Coupling ~ 10272,000 (Taylor and Wang 2015)

This data Is also clean!

Pure mathematics with zero noise



Why Machine Learning and String Theory?

TLDR: String Theory has an inverse problem

 Focus on spectrum for now

* To work out particle spectrum in 4D need (integer) topological data about the
manifold and field profiles of it

Geometric Data 4D Theory
D777

* |Incredibly hard to identify the few constructions of phenomenological interest!



Why Machine Learning and String Theory?

Large Datasets: c.f. Previous slide - conjecture generation
Discrete Optimisation: What compactifications lead to the standard model?

Solving PDEs: Solving 6D Einstein equations, CY metrics and field profiles.
Allows calculation of Yukawa couplings
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Geometrically Engineering the SM with RL



Building Bundles on Calabi-Yau Manifolds

 What Geometric Data?
* Fix a given CY manifold
 Monad Bundles - Non-abelian bundles formed from line bundles
* A line bundle are specified by its first Chern class - a vector of integers
* Therefore monad bundles are specified by large numbers of integers
* Aim: Find the MSSM with from Monad Bundle over a CY

* (An aside: Not the “standard embedding” - not so great for phenomenology)
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Reinforcement Learning and Monad Bundles

Monads and Non-Abelian Bundles

* Essentially only one known model before this aerson etaizom)
2 C 2,83
P?|3
P?|3

e 0= Vo 041,008 00,1 = 0(1,1) ® 0,(2,2) = 0
* Rank (6,2) monad -> rank 4 bundle -> SU(4) bundle -> SO(10) GUT in 4D

248p, — [(1,45) © (4,16) © (4,16) @ (6,10) ©@ (15’1)]SU(4)><SO(10)

e On the “bicubic”:

gauge families anti-families Higgs bundle
o bosons moduli
nie = h'(X,V), nig = h'(X,V*) = h*(X, V),
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Background

Computation - Reinforcement Learning (RL) - Schematic

states

i H agent
. 4 .

batches of

(state, action, reward)
from episodes
|

environment

terminal state

sequence of actions from policy
= episode -> rewards

neural policy network

updated

PO

icy

state —

L’ =

N R LN A |
Y . o
s ra \

N SN l/-—\‘ l'f\ l/"—\
SO
AN

~ action

|
A l’l'\ )
w ‘-"

CAC2C2
R

Image Credit: Andre Lukas



Background

Computation - Reinforcement Learning (RL) - Toy Example for Searching

* Find line bundles with with target index T (=18) on bicubic ?

* Solving a cubic Diophantine equation in two variables

* Environment: Space of line bundles (2D integer lattice)

L
6

dijik" K7k A

1

12 C24

(TX)k"

e Action: Move one space In lattice

 |ntrinsic state value: v =-

e Reward: rsHs'={

T offset

p=1,

10 |ind(Ox (k)) — 7|

Toffset —

hk3 ..

(v(s') —v(s))P if v(s')—w(s)>0
if v(s')—wv(s) <0

_]_,

T'step — 0,
15

} =+ Tstep T Tboundary T+ T'terminal

T'boundary — -1,

Tterminal = 2 -

v
—5.' .
n . . .

ooooo
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Background

Computation - Reinforcement Learning (

0
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(a) Loss vs batch number.

RL) - Toy Example

terminal fraction
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O
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(b) Fraction of terminal episodes vs episode number.




Reinforcement Learning and Monad Bundles
Encoding for RL

 Environment: monads on given CY3 (large lattice)

B rc
S = {(b17°"7b7‘37cla"‘7c’rc)|bmin S bic S bmaxa Cmin S CI; S Cmax sz — an}
1=1 a=1

* Actions: Move two spaces In the lattice

A:{bil—>bi::ek, ca'—>ca::ek|z’:1 ..... ™y, @ =1,..., rc, k=1,..., h}

e |Intrinsic state value: next page

e How close to MISSIM realisation?

v(s’) —wv(s))P if v(s')—wv(s)>0
® Reward: oy = { ( ( Z'offset( )) T: ’UES,; . UES; <0 } T Tstep T Tboundary T Tterminal
p=12, Tofiset =—2, Tstep = —1 Tboundary — —2;  Tterminal = 10 .

)
1/



Reinforcement Learning and Monad Bundles

Encoding for RL

Intrinsic state value:

We check cohomology
constraints on the terminal
states found during
training, along with a
better stability check

property term in v(B,C) comment
2|ind =
index match | — in h(]\v/_;')3 ul T = —3|I'| is the target index,
ind(V') computed from Eq. (2.20)
h
1
anomaly Ve Z min (c2;(TX) — ¢c2;(V),0) | no penalty if anomaly condition satisfied,
i=1
c2i(V) computed from Eq. (2.20)
bundleness —(dgeg + 1) d4eg = dimension of degeneracy locus
as discussed in Sec. 2.4; if the degeneracy
locus is empty, dgeg 1s to be taken as —1
split bundle —Tgplit Ngplit = number of splits in V
equivariance | — Z mod(ind(U), |T'|) U runs over all line bundles in B, C
UcB,C
or blocks of same line bundles,
as discussed in Sec. 2.4
trivial bundle | —ny ivial Nirivial = Number of trivial line bundles
- max(0,h°(X, B) — h°(X, C))

stability V'

hM3

tests Hoppe’s criterion for V,

cohomologies from formulae in Sec. 2.3

stability V*

~ max(0, h°(X, B*) — h%(X, C*))
hM3

tests Hoppe’s criterion for V*,

cohomologies from formulae in Sec. 2.3
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Reinforcement Learning and Monad Bundles

Training
Bicubic - (6, 2) monads - this is the same space as the known model

b=-3..5&¢c=0... 5-> 1073 states In total

After removing redundancies (and extra checks), the known model is the only
example without negative line bundle entries

After ~1 hour on a single CPU, we find ~15 models (after extra checks)

—
0.8 j 1000}
C P 4 N I
S _ £ 800}
S 06} - r
S o4l g 000
S 04l & i
e U =
= _ 4 1
0-21 _ i 200 |
0.0 amassha il M e R PR | . O—A_.l sl B S S S
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

19
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Reinforcement Learning and Monad Bundles
What is the Network doing?

0 S 10 15 20 25 30
O-O —-r r r v 1 ‘v r T T T T T T T [ T T T T ] T 1 L L L S .
—— index match
-0.1
anomaly
c
_g bundleness
=
Q —— split bundle
+= -0.2 varn
g —— equivariance
o —— trivial bundle
<)
% —— stability of V
> -0.3 stability of V=
-0.4+

Figure 7: The different contribtutions to the intrinsic value for (ry,7.) = (6,2) bicubic models. This
data is averaged over 1000 termianl states using the trained network.
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Pushing to Saturation

iInequiv. perfect states

600
500 -
[ Also have O(500) models on triple tri-linear
400 F
; P21 1 1
300 - X ~ P21 1 1
" P21 1 1

200 |
100 |

| ] 1 1 | |

: e e visited states
5.0 x 108 1.0x10° 1.5x%x10°

Found after further cohomology checks (35 genuine (6,2) Monads)

Found similar success with genetic algorithms for discrete optimisation
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Comparison to searches

We also have found similar success with genetic algorithms and environments up to ~10728

Manifold A |[I'||Range| GA Scan|Found Explored
7862 4 2 |[-78]| 5 5 [100% 10~ '°
7862 4 4 |[-78]| 30 31| 9™% 10"
7447 5 2 |[-78]| 38 38 |100% 10~ *“
7447 5 4 | [-7,8] | 139 154 | 90% 10~ ¢
5302 6 2 |[-7,8] | 403 442 | 93% 10 *°
5302 6 4 |[-7,8]| 722 897 | 80% 10"
4071 7 2| [-3,4] |11,937 N/A| N/A 10**
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Calculating Quark Masses from String Theory



Yukawa Couplings in String Theory

* Couplings require information about geometry (not just topology)
* This involves finding the metric on the Calabi-Yau and other field profiles
e |.e. Solve the 6D Einstein equations, coupled to matter! Very hard

 Have recently managed to do this with these line bundle sums! This also
iInvolved machine learning methods, where the metric and fields are
represented by NNs, and the loss function is made from the PDEs

* First calculation of this kind - made possible by ML!

Computation of Quark Masses from String Theory

Andrei Constantin,!>* Cristofero S. Fraser-Taliente,!* T Thomas R. Harvey,!¥ Andre Lukas,!>3 and Burt Ovrut?: 1

! Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Ozford OX1 3PU, UK
?Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA

24



Why do you need geometry now?

* Fields are not canonically normalised in a string compactifications

B L ) _. P
Field space metric Holomorphic Yukawa Couplings
KIJNJ I/I/\*VI/] /A{IJ""’JA I/I/\I/J/\I/K
CY CY

N\

Hodge Star - Depends on the Metric!
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What is v?

IJN[ Uy N kyyy I]NJ' Vi NVy N Vg
CY CY
JANTYZCR) EN QAVE AN 1Y P(x,y) = Z POV (), D vi(y) = miv(y)
I
A4 an(X) + m,%gbn(x) = () /
We only want the zero modes The derivative is the gauge and gravity covariant derivative

Geometry: Metric — n—- Gauge Field — e————  Harmonic forms

26



This model has the MSSM Particle Content + Uncharged Moduli

The String Model

No extra vector-like pairs or chiral exotica

Hypersurface N A=P1 XP1 X P1 X P41 ~ 52X S2X S2X S2

SU(5) Like structure but no GUT phase

p = Z xg‘yg‘ufvg + Y Z xg‘yﬁzufvg‘
Q) (9s
even odd D2,4 D4,5 d U
+l//X0x1y0ylu0u1V0V1 2 U2 ’ US ’ L ’ 2 L ’ H2,53 H2,5 .
E E 2,4 4,5
2 5

L, L, Ly Ly Ls
-1 -1 0 1 1
O -3 1 1 1

V=0xlo 2 _1 -1 o0 0 0 * 00 0
1 2 0 -1 =2 Y,~|0 0 *| Y,~|0 0 0
® k() 0 0 0

First Calculation of its kind! Proof of concept - do not expect realistic results
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Equations to Solve

1 detg
KQAQ

Correction to a reference metric: 8cvas = 8rsab + 9,959, ZLMA ~

D

This is called the Monge-Ampere equation.
It is equivalent to the vacuum Einstein equations for our purposes

Correction to a reference connection on each line bundle: A = H 1o0H

HY = eﬂHI]?S' solve Af = Pp ZHYM ~ ‘Aﬁ— pﬁ|
P

Correction to a reference 1-form for each field: v =v,,,+ 0,0y, ZLoneform ~ IALio'— P,
p

¢ and [3 are functions while o is a section. They need to transform appropriately - imposed with architecture

For the up Yukawas, we need 11 NNs in total
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(Equivariant) Projective Neural Networks

“A tensor is something that transforms like a tensor!”

C2-0
Pil=—— = [xyl=Mxy|Vie(C*
(]:>I<
Functions: f(ix, Ay) = f(x,y)
Xy XX yy

— ...feed-forward network--- - R

7y lx,y] =

2 2’ 2 27 2 2
R e o 2 O o S N 2 R P i o B

Sections: o € Op (n) = o(4x, Ay) = A"o(x, y)

Xy XX Vy

: : — ...feed-forward network:-- - R® = (a,b,c) € C° = ax? + bxy + cy?
x|y Py Ix P+ Iy

n=2 m:lx,yl—

These generalise to P14 and higher dimension projective spaces
29



metric on the bundle (1,1,1,1)

MIVTIyT~AlNppycli © LUSOS

10° -
. ' HIL : : .
: Il V ‘ 'VV ] | Topological obstruction to solving EOM
m m . J
Training : )
Ricci-flat metric % Fails . Higgs harmonic form
Qata - 107" integrability Data
— Tra!n L?SS ] condition: 1 _— Tra!n L955
- \alidation Loss -~ Validation Loss
Data ‘'slope nonzero’
Monge-Ampere measure < 1% 1 — Train Loss
1 — Validation Loss " 10° 1
0 20 40 60 80 100 3
Epochs _E
- 10‘13
metric on the bundle (1,-1,1,-1) ‘
10V 5
_ Data
—— Train Loss
—— Validation Loss 10-2 . l ‘ ’ ] . I ; ]
0 5 10 15 20 25 30 35 40
T T T T T . EpOChS
20 40 60 80 100 Passes
Epochs 1 : .
iIntegrability
condition:
‘slope zero' _ iy
All satisfy the EOM to within a few percent
10~ (This is the error on the formal correction)
Topological allowed to solve EOM «

0 20 40 60 80 100
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Results

From model structure, will always ..
have one massless quark

0.009

0.007

0.006

From choice of one-parameter family
of moduli two remaining masses are ™
equal 2 oo

0.003

We checked that this degeneracy is

ifted for other choices of moduli
Statistically ~1% error

Reference quantities are
unexpectedly very close (~10% error)
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Trained vs Reference vs Holographic Masses for varying ¢

Trained mass

—+— Holographic mass

a "+—- Reference mass
"-‘"..
'l.“--
-..
"l"‘-.
o n#““““
(K = K7 .
l“-“ . — [trained
- (Ku _Klf )
““‘N..
“l“'-.
"-‘...“-‘
I"‘.'
.-.“-
ll“
(holomorphic, K;; = 6;5)
bé’t’iv&"étété;if&& AAAA
:'cg:r-ﬁgaa*x:,t‘,-_.& 4
R *xiuhauskt&bz:,tn‘i rrrrrrrrrr
'ﬁﬁ::ﬁ'tﬁﬁtxi’ gggggggggg
=z =& & ﬁﬁh‘b‘tzb &&&&&&&
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Conclusions

 Methods from data science allow for searches for interesting string vacua
 RL can be used to Engineer string vacua with specific properties

* In our case to lead to the the MSSM

o Starts finding examples after exploring 10-7 of the environment

 [These methods can be applied more broadly to large landscapes in physics
* Solve Einstein’s equations and Yang-Mills equations in 6D

* NNSs represent solutions

* Can use this to calculate previously inaccessible quantities
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