Hopfield-Ising networks and
Hinton-Boltzmann machines

How analogies and insights from statistical mechanics
created the Al revolution

and led to two Nobel prizes in Physics and Chemistry '24
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The 2024 physics
laureates

The Nobel Prize in Physics 2024 was awarded to John J.
Hopfield and Geoffrey E. Hinton “for foundational
discoveries and inventions that enable machine learning
with artificial neural networks.”

John Hopfield created an associative memory that can
store and reconstruct images and other types of patterns
in data. Geoffrey Hinton invented a method that can
autonomously find properties in data, and so perform
tasks such as identifying specific elements in pictures.

John Hopfield and Geoffrey Hinton. Ill. Niklas Elmehed €
Nobel Prize Outreach



The 2024 chemistry
laureates

The Nobel Prize in Chemistry 2024 was awarded with one
half to David Baker “for computational protein design” and
the other half jointly to Demis Hassabis and John M.
Jumper “for protein structure prediction”.

Demis Hassabis and John Jumper have successfully
utilised artificial intelligence to predict the structure of
almost all known proteins. David Baker has learned how to
master life’s building blocks and create entirely new
proteins.

David Baker, Demis Hassabis and John Jumper. Ill. Niklas
Elmehed © Nobel Prize Outreach



Analog electronic implementation AlphaFold2

of the Hopfield network, ~mid-1980s 2021
NEURAL NETWORK :
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F1GURE 1

McCulloch and Pitts 1943

Ficure 9

Ficorz 8 Cells A and B he m a region of area 17 (shown by hatching)

which 15 massively excited by an afferent shmulation C 13 a cell m area

18 which leads back mto 17 E is 1 area 17 but hes outside the region of
activity See text.

Ficure © A, B, and C are cells 1n area 18 which are excited by converging

fibers (not shown) leading from a specific pattern of activity in area 17.

D, E, and X axe, among the many cells with which A, B, and C have con-

nections, ones which would contribute to an mtegration of thewr activaty,
See text.

Hebb 1949

Fi1G. 3A. Predominant phase, Inhibitory connections
are not shown, Solid black units are active.
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Fi1G. 3B. Postdominant phase. Dominant subset
suppresses rival sets. Inhibitory connections shown

only for Ri. Rosenblatt
F1G6. 3. Phases of response to a stimulus, 1958



Neurons: biological and artificial
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Linearly non-separable problem? => multi-layer perceptron

Deep Neural Networks
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Training deep neural networks

Learning representations Sigmoidal activation
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton?
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

§
the “backprop” paper essentially, the chain rule of differentiation!
Nature 323:533, 1986 progenitor to modern “automatic differentiation”

ReLU Rectified
Rectified Linear Units Improve Restricted Boltzmann Machines e Linear Unit
2
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Vinod Nair VNAIR@CS.TORONTO.EDU
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Dynamic associative memory

dynamical evolution
We can think of this memory as a

t = t — 00

dynamical system: it is initialized
at =0 with an imperfect version of
the content; then, through
dynamical interactions between
pixels, as t—= it evolves to a final
recall state that matches the
content perfectly.

FIGURE 2.1 Example of how an
associative memory can recon-
struct images. These are binary
images with 130 x 180 pixels. The
images on the right were recalled
by the memory after presentation
of the corrupted images shown
on the left. The middle column
shows some intermediate states.
A sparsely connected Hopfield
network with seven stored images
was used.

I'I" | LS Hertz, Krogh and Palmer p. 12



Associative Memory as a Dynamical Attractor

“phase space”
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The recurrent neural network is initialized with a partial (or distorted) memory, then
follows a trajectory to an equilibrium representing the correct complete memory.

lllll |II S0 Hertz, Krogh and Palmer p. 13



Neural Nets: feedforward vs recurrent
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Feedforward - Static

Input x propagates through,
produces output y

Recurrent - Dynamical

Inputs are initialized as

states x1, ... xs,

dynamical interactions evolve,
outputs are the same units’
states x1, ... x5,

after sufficiently long time
(i.e., in equilibrium)




Continuous binary associative memory:
Hopfield network dynamics in a 63-state system

# states N =9x7=63, p=0~6.

V(t = 0) V(t — o)

u (t = 00)
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Statistical mechanics of Hopfield networks

¢
i ? i ? ....... ij i FIGURE 2.7 A very simplified picture
? ? ? i i ? of a magnetic material described by an

Ising model.

w;; : interaction strength between magnets ¢ and j

1
in physical Ising model: w;; ~ —; ... and, by convention, nearest neighbors only.

7“@']'
in Hopfield model: w;; learned from the stored patterns

equilibrium condition:

magnet spin x; = tanh | 8 Z Wi T sigmoidal! 8= T T : “temperature”
J

Hertz, Krogh and Palmer p. 25

I||i|- ||| B K Grossberg and Cohen, IEEE Trans. Syst. Cybern. SMC-13:815, 1983



Capacity of the Hopfield network

p patterns, N neurons

a = % network capacity

a. ~ 0.138 maximum capacity

FIGURE 2.17 The phase diagram
obtained by Amit et al.. The

desired memory states are only
0'00.00 0.10 0.15 stable in the shaded region.

landscapes
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Hertz, Krogh and Palmer p. 39, 40




Boltzmann machine

Intent: starting from 4x4 pattern of random noise, and following Ising stochastic dynamics,
to converge to one of the three patterns below with given probabilities po, px, pt

- Implemented as a Boltzmann machine
with 16 visible units, 9 hidden units,

visible to visible to visible to visible to
visible hidden visible hidden

vise t hidden to visible to hidden to

hidden hidden hidden hidden
Initial wij; Trained wij

visible to visible: Hopfield-like
others: white but symmetric

and po = px = pt=Ys. Temperature T=1.

iy m
=T s
st o=
TTaT

Sixteen runs, initialized with
white noise on visible + hidden units,
shown to stabilize randomly
at one of the three stored patterns
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Wi o 15



AlphaFold

NEURAL NETWORK

How does AlphaFold2 work? DATABASES <> <z 3. Al ANALYSIS
As part of AlphaFold2’s development, the Al model has .g .? Us!ng an iterative process, A_lphaFol‘dZ
been trained on all the known amino acid sequences and refines the sequence analysis and distance

determined protein structures.

<<§

focus on. Data about other protein
structures - if they were found in

step 1 -is also utilised. T -« PR

map. The Al model uses neural networks

called transformers, which have a great ™~

capacity to identify important elements to ( CYCLE 1
N K

1. DATA ENTRY AND
DATABASE SEARCHES

An amino acid sequence with _— AlphaFold2

CYCLE 2

unknown structureis 4. HYPOTHETICAL STRUCTURE ° e

fed into AlphaFold2, which [ 2K ]

searches databases for similar AlphaFold2 puts together a puzzle of e e

. . all the amino acids and tests pathways o o « 4—/ vy,

amino acid sequences and SEQUENCE ANALYSIS to produce a hypothetical protein CYCLE3 ’

protein structures. structure. This is re-run through step 3. .- ..- \ .
Have co-evolved Have co-evolved After three cycles, AlphaFold2 arrives " ==

2. SEQUENCE ANALYSIS > A A at a particular structure. The Al model LI ] - -
(O N ( ) h . T | s

The Al model aligns all the similar amino acid unkNOWN @ ) [9) [5) calculates the probability that different u EEm - ~

sequences - often from different species - and parts of this structure correspond umEn , .

investigates which parts have been preserved | | | to reality. A

during evolution. ©Johan Jarnestad/The Royal Swedish Academy of Sciences

m 0
In the next step, AlphaFold2 explores which amino v .
acids could interact with each other in the three- # .
dimensional protein structure. Interacting amino N .
acids co-evolve. If one is charged, the other

has the opposite charge, so they are attracted y .
to each other. If one is replaced by a water- !
repellent (hydrophobic) amino acid, the other

also becomes hydrophobic.

DISTANCE MAP

v Using this analysis, » [ ] ] |
AlphaFold2 produces
Charged Hydrophobic a distance map that g . . . O
estimates how close e || EEn
amlno_aigjs atre t? each 2 HE BEBE
other in the structure. : [} [}
“« . N EENE

< Furthest Closest—>
apart

AMINO ACIDS IN
FOLDED PROTEIN
STRUCTURE

AMINO ACIDS

https://www.nobelprize.org/uploads/2024/10/advanced-chemistryprize2024.pdf
L [T ILS— 16




Natural and novel proteins & enzymes

2022: Part of a huge molecular structure 2022: Natural enzymes that can 2023: A bacterial enzyme that causes

in the human body. More than a thousand decompose plastic. The aim is antibiotic resistance. The structure is
proteins form a pore through the to design proteins that can be important for discovering ways of preven-
membrane surrounding the cell nucleus. used to recycle plastic. ting antibiotic resistance.

©Terezia Kovalova/The Royal Swedish Academy of Sciences

https://www.nobelprize.org/uploads/2024/10/advanced-chemistryprize2024.pdf
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some partial lineages for Machine Learning

Hassabis 2020 AlphaFold2 % Stable [fffusion Rombach 2022
Hassabis 2018 AlphaFold1 =
o A e |¢«—— Transformer  Vaswani 2017
He Kaiming 2016 ResNet a Generative A Goodfellow 2014
T Adversari:l Network
Variational )
Kingma 2014
Krizhevsky 2012 Alex Net Auto-Encoder
Glorot 2011 4 T
, RelLU
Nair 2010 Neural-Network Hinton 2006
T Auto-Encoder
| LSTM  Schmidhuber 1997
LeCun 1989 Convolution:l Neural Net A
Rumelhart 1986 Backprop Restricted———> Smolensky 1986
A Boltzmann machine
Boltzmann machine Hinton 1985
Hopfield 1984

Associative memory —
Hopfield 1982

Self organizing
maps

Kohonen 1972

Rosenblatt 1959
Hebb 1949
McCulloch & Pitts 1943

Perceptron
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the 2.c01/2.¢51 compass

Statistics
Machine
Learning

Linear Algebra

Optimization

» Physics principles to augment our understanding of how

Machine Learning algorithms are designed and function

« Machine Learning algorithms to augment our ability to

model, predict, and control physical systems
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