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Hype, myth, or real deal?





Why hasn't astronomy had its
"AlphaFold" moment yet?"



Most AI in Astronomy focuses on extending statistical methods
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or building effective brokers / classifiers

Rubin Observatory



Improving individual downstream tasks with
annotated data in a confined setting will

not revolutionize astronomy



The complexity of astronomy is too low for AI

My niece
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Cosmic large-scale structure
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Astronomy already has a successful standard model
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The Bitter Lesson - Rich Sutton, 2019

"We should build in only the meta-methods that can find and
capture this arbitrary complexity.

Essential to these methods is that they can find good
approximations, but the search for them should be by our methods,
not by us.

We want AI agents that can discover like we can, not which contain
what we have discovered."



Toward an AI Astronomer
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Enabling LLM agents to
learn how to make plan

through open world exploration 
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through open world exploration 

Human "intuition" +
experience



Sun, YST+, 2024b
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Astronomical research is
more than just �tting data

??
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Action space is vast and transcends mathematical formalism

Young stellar
population?
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Many real-world projects lack a mathematical reward function

The objective goes beyond minimizing a single error metric.

Many tasks may require modifying assumptions /
physical models, not just optimizing over all parameters

Real-world action spaces are vast and hard to parameterize.



Can a large-language model learn
from its own experience?





Self-Play Reinforcement Learning
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Introducing Mephisto*

* In the classic tale of Faust, Mephisto is a demon who
tempts the scholar Faust with knowledge and power in
exchange for his soul.
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Example of learned "knowledge"

" If the �t is overestimated in the UV and optical bands,

increasing the E_BV_lines parameter may lead to a
better �t by accounting for more dust attenuation in

these bands. "



Example of learned "knowledge"



Example of learned "knowledge"

" If there is a gross underestimation in the MWIR bands,



Example of learned "knowledge"

" If there is a gross underestimation in the MWIR bands,

consider exploring a wider range of
fracAGN values in the agn module to

improve the �t in these bands "



Number of Learning Iterations
0 10 20 30

5.1

5.6

6.0

6.4
GPT-4o baseline --
"think without knowledge"

C
h

i-
Sq

u
ar

e 
o

f t
h

e 
F

it
LLMs with self-play RL outperforms native LLMs

Sun, YST+, 2024b



Number of Learning Iterations
0 10 20 30

5.1

5.6

6.0

6.4
GPT-4o baseline --
"think without knowledge"

Mephisto

C
h

i-
Sq

u
ar

e 
o

f t
h

e 
F

it

Sun, YST+, 2024b

LLMs with self-play RL outperforms native LLMs



Number of Learning Iterations
0 10 20 30

5.1

5.6

6.0

6.4

Chi-Square

C
h

i-
Sq

u
ar

e 
o

f t
h

e 
F

it Why this plateau ??

Sun, YST+, 2024b

LLMs with self-play RL outperforms native LLMs



Number of Learning Iterations
0 10 20 30

5.1

5.6

6.0

6.4

Chi-Square

C
h

i-
Sq

u
ar

e 
o

f t
h

e 
F

it

 - Number of
photometry
bands �tted
within 1σ

Sun, YST+, 2024b

LLMs with self-play RL outperforms native LLMs



Number of Learning Iterations
0 10 20 30

5.1

5.6

6.0

6.4

Chi-Square

C
h

i-
Sq

u
ar

e 
o

f t
h

e 
F

it

 - Number of
photometry
bands �tted
within 1σ

"Exploration"

Sun, YST+, 2024b

LLMs with self-play RL outperforms native LLMs



Number of Learning Iterations
0 10 20 30

5.1

5.6

6.0

6.4

Chi-Square

C
h

i-
Sq

u
ar

e 
o

f t
h

e 
F

it

 - Number of
photometry
bands �tted
within 1σ

"Exploration" "Exploitation"

Sun, YST+, 2024b

LLMs with self-play RL outperforms native LLMs



LLMs can reach human-level reasoning for
specific astronomy analysis tasks through

self-play reinforcement learning
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Explaining James Webb's "little red dot" galaxies with mephisto



Potentially identifying all the astronomical objects'
SED that our current physics can't explain 



Provided that we have a capable model that can
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capable model vs. cost efficiency

e.g., GPT-4o   (this study)

In the SED case study, we need ~0.1M tokens per source

= USD 1 per source ...
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1B sources = $1 billion
e.g., Roman Space Telescope, Euclid Space Telescope

~ approximately the build cost



How do we get there in a cost-effective way?



The �rst extensive benchmarking effort of
 Large Language Models in terms of astronomy Q&A.
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Curation of 5000 high quality astronomy QA benchmark dataset



Benchmark multiple choice question - example
What is the primary reason for the decline in the number density of
luminous quasars at redshifts greater than 5?

A decrease in the overall star
formation rate, leading to fewer
potential host galaxies for quasars.

An increase in the neutral hydrogen
fraction in the intergalactic medium,
which obscures the quasars’ light.

A decrease in the number of massive
black hole seeds that can form and
grow into supermassive black holes.

An increase in the average metallicity
of the Universe, leading to a
decrease in the ef�ciency of black
hole accretion.
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Proprietary models
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Claude-3.0-Opus, Mistral-Large-2,
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Nov 2024



 Open-weights large language models?



In academic settings, it's still easier to secure
GPU time than to get grants for LLMs.
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Identifying the limitations
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Identifying the limitations

YST, AstroMlab+ 2024



Trustworthiness : Are you sure?

YST, AstroMlab+ 2024



 Open-weight large language models
are as good as the proprietary models



 Open-weight large language models
are as good as the proprietary models

at the ~70B level
and beyond
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LLaMA-3.1 70b throughput on four H100 GPUs

= ~ 100 tokens / second

1 SED source = 15 GPU minutes

1B sources = 10M GPU days

A cluster with 10,000 H100 GPUs 
running for 3 years



Can we improve lightweight (e.g., 8B)
open-weights LLMs to perform well on

astronomical tasks?





Special thanks to
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The �rst specialized LLM
in astronomy that

outperforms its original
baseline general model

Achieve same score as
GPT-4o in astronomy

Q&A



For individual specific downstream task,
it is possible to train a super-performant

lightweight LLMs.



Huang's Law
C

o
m

p
u

te
 P

o
w

er

Year





= 0.03 USD



= 40 USD



Sc
o

re
 (%

)

Cost per 1 SED Source (USD)

The ultra cheap
models are not
great yet

AstroSage-8B



The price drop has
an e-folding time
of appromately
3-6 months

YST, AstroMLab+ 24
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Collecting
more data

???
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Data-poor , Theory-rich



三个臭⽪匠胜过⼀个诸葛亮

"Three cobblers with their wits combined surpass one
Zhuge Liang (~Machiavelli) " - Chinese proverb

Millions of LLM agents


