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Language isn’t everything

® Mastering language is viscerally impressive, but LLMs

completely dominate the conversation
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Language isn’t everything

® Mastering language is viscerally impressive, but LLMs
completely dominate the conversation

® A "model that understands X" where X = a scientific
domain can be extremely valuable!
» Operating in complexity regimes where our abilities are

severely limited

i A

Demis Hassabis

Article | Open access | Published: 15 July 2021
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'd like a foundation model that understands particle physics
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Models that understand physics

i A

'd like a foundation model that understands particle physics

give me a concise but technical explanation of asymptotic freedom in QCD

Asymptotic freedom in Quantum Chromodynamics (QCD) refers to the property that the strong coupling constant @; decreases at high

energy (or short distances), causing quarks and gluons to interact weakly at high energies but strongly at low energies, leading to confinement.

Technical Explanation

1. Beta Function & Running Coupling:

The behavior of the QCD coupling &: = g2/(4m) is governed by the renormalization group equation:

d'as

where the QCD beta function at one-loop is:

2 T
J.Nj.

8
Bla,) =—""a?, with B,=11-— 3

27

Arf < 16

Here, * 't is the number of active quark flavors, and for we get Fo > 0 implying asymptotic freedom.

2. Energy Dependence of %.:

Integrating the beta function gives the running coupling:
4dn

o) & BoIn(p?/ AéCD) ’

where Aaqcp ~ 200 Mgy is the QCD scale parameter.

. At high energy (# AQCD), o; decreases, meaning quarks behave as free particles (asymptotic freedom).

. At low energy (* ™ AQCD), @, increases, leading to quark confinement into hadrons.
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Models that understand physics i A

I'd like a foundation model that understands particle physics data!

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 6



Models that understand physics UTE F

'd like a foundation model that understands particle physics data!

Svent 139204/39158985-0
Time 2024-03-27 11:04:49 UTC
Duration 19889.0 ns

Experimental data
(hundreds/thousands of channels)
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Models that understand physics i A

'd like a foundation model that understands particle physics data!

Self-supervised training,
understands the “structure of the data”

Experimental data Foundation model

(hundreds/thousands of channels)
*experiment-specific
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Models that understand physics i A

'd like a foundation model that understands particle physics data!

Self-supervised training,

understands the “structure of the data” < Identify underlying physics (Higgs, top
Y 4
R quark, ...)
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Y 4
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Y 4
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l" -” - o
Y 4 - -
’ -
"‘ -° i - =
JOLEEREELLELE > Regression (e.g. particle energy)

L ~

.. “» Anomaly detection (new physics)

Fine-tune -,
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Analysis automation

Experimental data Foundation model Downstream tasks

(hundreds/thousands of channels) _ B
*experiment-specific
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Understanding physics data I A

If LLMs can write, code, and “reason”, can
they also do my job?

' CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
A'/ Run/Event: 194108 / 564224000
L
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Understanding physics data I A

what is going on in this picture

If LLMs can write, code, and “reason”, can

th ey a I SO d O my j O b? This is an event display from the CMS Experiment at the Large Hadron Collider (LHC). Such displays visualize the data collected from particle

collisions inside the detector, showing the trajectories of particles and energy deposits as they are reconstructed.

CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000

Key Features of the Image:
1. Collision Point (Interaction Vertex):

- The orange lines emanating from the center represent the tracks of charged particles produced in the collision. The point where these

lines originate is the interaction vertex, where two protons collided.
. Yellow Dashed Line:

+ Indicates the possible trajectory or momentum imbalance associated with particles not directly detected (e.g., neutrinos or missing

transverse energy).

. Green and Orange Rectangles:

« These are energy deposits in the calorimeters:
- Orange regions represent energy deposited by particles in the electromagnetic calorimeter (ECAL), typically photons or electrons.
- Green regions represent energy deposited in the hadronic calorimeter (HCAL), typically from hadrons like protons, neutrons, or pions.
. Blue Cylinder:

« Represents the CMS detector geometry, showing the surrounding tracking systems and calorimeters that measure particles' momenta

and energy.
. Long Green Lines:
- Likely represent muons, which penetrate the entire detector and are reconstructed in the outermost layers of the CMS muon chambers.
. Purpose of the Event:

Image credit: CERN

« This display could represent a candidate event for a Higgs boson decay or other interesting physics processes, such as electroweak

interactions or rare decays. The clean central vertex and extensive particle activity suggest it is a high-energy event.

Would you like more detailed information about a specific component or the physics process being studied?
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Understanding physics data I A

tell me about the physics process occurring here

This event display from the CMS experiment at the LHC likely represents a high-energy proton-proton collision. The physics process
occurring here could involve a Standard Model process, such as Higgs boson production, electroweak interactions, or QCD jets, depending

CMS Experiment at the LHC, CERN on the details of the event. Let me walk you through the possibilities based on the visible features:
Data recorded: 2012-May-13 20:08:14.621490 GMT

Run/Event: 194108 / 564224000

¢
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Understanding physics data I A

Possible Physics Processes

GRS T tell me about the physics process occurring here

« The display shows a high-energy collision producing many particles. It could correspond to a Higgs boson decay, where the Higgs is

produced and decays into detectable particles.

This event display from the CMS experiment at the LHC likely represents a high-energy proton-proton collision. The physics process
« Potential Higgs decay channels:

y : . : occurring here could involve a Standard Model process, such as Higgs boson production, electroweak interactions, or QCD jets, depending
. => yy (two photons):

on the details of the event. Let me walk you through the possibilities based on the visible features:
- If two large, isolated energy deposits in the electromagnetic calorimeter (orange) are visible, this could signify photons from a Higgs

decay.

How to Identify the Process
« H> ZZ - 4 |leptons:

« Tracks corresponding to muons (long green lines) or electrons might indicate this channel, a “golden channel” for Higgs observation due - -
E - (long g ) 8 - L To determine the exact physics process:
to its clean signature.

I e e e 1. Track and Vertex Analysis:

. Missing transverse energy (indicated by the yellow dashed line) suggests escaping neutrinos, a hallmark of this channel. - Examine whether the tracks correspond to charged leptons (e.g., muons or electrons) or jets.

T P « Look for high-energy isolated objects (e.g., photons or leptons).

« The dense spray of orange and green rectangles near the interaction vertex suggests the presence of jets, which are collimated showers of 2. Calorimeter Energy Deposits:

particles originating from quark or gluon fragmentation.

« The patterns of green (hadronic) and orange (electromagnetic) deposits reveal whether the event is jet-dominated (QCD) or includes
« This could be a hard scattering process, such as: . .
isolated photons/electrons (Higgs or electroweak processes).

« QCD dijet production (dominant at the LHC).

3. Missing Energy:
« Top quark pair production (t-tbar):

. . .. . N . . « The presence of a missing transverse energy vector (yellow dashed line) often signifies neutrinos or potential new particles.
« If the event involves jets and missing energy, it could signify top quark decays into W bosons and jets.

4. Monte Carlo Simulation:
3. Missing Transverse Energy and New Physics

« The yellow dashed line (missing transverse energy) indicates an imbalance in momentum in the transverse plane. This often occurs when » CMS physicists compare such events to simulations of known physics processes to classify them.

particles like neutrinos escape the detector.

« Missing energy could also hint at new physics processes, such as:

Most Likely Interpretation
+ Supersymmetry (SUSY):

« Lightest supersymmetric particles (LSPs) can escape detection, leading to large missing transverse energy. N o ey T

« Dark Matter production:
- If it features isolated high-energy photons or leptons, it might be a Higgs boson candidate.

« Hypothetical dark matter particles produced in the collision would not interact with the detector, causing a momentum imbalance.
« If it involves large sprays of particles (jets) and missing energy, it could be top quark production or a search for new physics.
4. Electroweak Processes

« If jets dominate with no missing energy, it is likely a QCD dijet process.
« The event could also involve weak bosons (W= or Z9), which often produce leptons (e.g., muons or electrons) and neutrinos:

ANy Iviteptonandneutino decsy). v Would you like more specific guidance on identifying key features or understanding the event reconstruction process?
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Understanding physics data I A

CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000

tell me your best guess about the specific process occurring (a single answer)

My best guess is that this event represents Higgs boson production with decay into two W bosons, followed by H —+ WW — £uvfv (where £

represents leptons, and v are neutrinos).

Why this process?

- Yellow dashed line (missing transverse energy): Suggests escaping neutrinos, characteristic of W — £v decays.
- Spray of particles near the vertex (jets): Consistent with activity from initial proton-proton collision and decay products.

- Presence of long green tracks (muons): Likely indicates leptonic decays of the W-bosons.

This process is a prominent channel used to study the Higgs boson because of its relatively clean leptonic signature combined with missing

energy.

Not even close!

Image credit: CERN Clearly there is some work to be done...

H — }/7/ But what do we mean by “foundation model”?
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Handling physics data

Particle physics data is really different than

language!

i A
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Handling physics data

Particle physics data is really different than

language!

» Very high-dimensional, not tokenized, almost no
“meaning” by Itself

» Unordered

"9 CMS Experiment at the LHC, CERN

Data recorded: 2015-Sep-28 06:09:43.129280 GMT
Run / Event / LS: 257645 / 1610868539 / 1073

i A

Image credit: CERN
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Handling physics data

"9 CMS Experiment at the LHC, CERN
Data recorded: 2015-Sep-28 06:09:43.129280 GMT
Run / Event / LS: 257645 / 1610868539 / 1073

Particle physics data is really different than

language!

» Very high-dimensional, not tokenized, almost no
“meaning” by Itself

» Unordered

Image credit: CERN
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Handling physics data i A

M CMS Experiment at the LHC, CERN
Data recorded: 2015-Sep-28 06:09:43.129280 GMT

Run / Event / LS: 257645 / 1610868539 / 1073

Particle physics data is really different than
language!
» Very high-dimensional, not tokenized, almost no

“meaning” by Itself

} Unordered \ P 4 Image credit: CERN
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Handling physics data

Particle physics data is really different than

language!

» Very high-dimensional, not tokenized, almost no

“meaning” by Itself

» Unordered

p Interpretation is statistical (no N = 1 discovery)

p Highly context-dependent (detector, reco)

-

p Defined at many di
» Generative models (e.g. G

necessary

‘erent scales

PT) are rarely

What kind of “foundation model”
approach is suited to this data?
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The “space” view T A

higgs

n%ewphysics?
Ll

electroweak

CMS Experiment at the LHC, CERN
§| Data recorded: 2015-Sep-28 06:09:43.129280 GMT
| Run/Event/LS: 257645/ 1610868539 / 1073

Image credit: CERN

® My position In this talk: a good “FM” for collider data should compress noisy, complex, high/variable-
dimensional data into a low-dimensional, physically meaningful embedding

® A “universal pre-processing step” for collider data — everything else can be fine-tuned downstream

® Possibility to inject inductive biases (e.qg. preserving physical metrics, accounting for systematics, etc)
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® An LHC physics primer 8 1
® Progress towards useful “spaces” for HEP .
» Semi-supervised spaces for anomaly I
detection M;; [GeV]
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Outline

® An LHC physics primer

Events / 100 GeV

® Progress towards useful “spaces” for HEP

p Semi-supervised spaces for anomaly

detection

p Self-supervised contrastive spaces for

anomaly detection & more (FM-style)

p Correcting simulation bias
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® An LHC physics primer

® Progress towards useful “spaces” for HEP 10

p Semi-supervised spaces for anomaly |

detection

p Self-supervised contrastive spaces for

anomaly detection & more (FM-style)

p Correcting simulation bias

® Ongoing/future work & outlook
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Number of injected signal events
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Some LHC physics




The Large Hadron Collider U

LHC:- 27k

>

The LHC collides (bunches of) protons at a center of

. . _ mass energy of 13 TeV
World’s largest particle collider — 27 km circumference

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 14



The experiments

i A
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The experlments The Compact Muon Sllu'nljd F.

(CMS)

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter : 15.0 m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7 m Microstrips (80x180 pm) ~200m? ~9.6M channels

Magnetic field :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL

ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 15



The experlments The Compact Muon Slllel'nud F.

(CMS)

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter : 15.0 m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7 m Microstrips (80x180 pm) ~200m? ~9.6M channels

Magnetic field :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

Electron

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)

~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels
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Interpreting the data

What we care about
(and can calculate)

q q

What we can measure

q q

Machine learning is extremely well-suited to tackling HEP problems!

Al tools are deeply embedded in LHC analysis ecosystem

i A

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 16



Where Al comes In U

LHC physics workflow

19.7 fo™ (8 TeV) + 5.1 fb" (7 TeV)

x10°F
asf. CMS S/(S+B) weighted sum
SE
E Y
3Re
25F
2F
155
1
E =1 -0.23
05 M, =124.70 = 0.34 GeV
of
200

S/(S+B) weighted events / GeV

100

0

-100 -
110 115 120 125 130 135 140 145 150

.. m,, (GeV)
Collide Trigger Analyze
40 MHz Select only the “interesting” events to save. Reconstruct data, make SM
Overwhelming data rate! Fast, on-chip data reconstruction & inference measurements, search for new physics
Nature Emerging Al frontier Al is everywhere ...
q q . C .
_ ® Signal vs background discrimination
Anomaly trigger
h I S 4 m I ® Taggers (e.g. Higgs)
e 5103.05579 ® Anomaly detection (new physics)
Huge, rapidly evolving field!
q q Hep ML Living review

FastML

(~1.4k papers & counting)

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 17
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https://fastmachinelearning.org/
https://cds.cern.ch/record/2904695
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Where Al comes In

Collide

40 MHz
Overwhelming data rate!

Nature

LHC physics workflow

Trigger

Select only the “interesting” events to save.
Fast, on-chip data reconstruction & inference

Emerging Al frontier

his 4 ml

2103.05579

Anomaly trigger

FastML

i A

19.7 fo™ (8 TeV) + 5.1 fb" (7 TeV)

a5k f_l\)llf; S/(S+B) weighted sum

S/(S+B) weighted events / GeV

This talk

Analyze

Reconstruct data, make SM
measurements, search for new physics

Al is everywhere ...

® Signal vs background discrimination
® Taggers (e.g. Higgs)

® Anomaly detection (new physics)
Huge, rapidly evolving field!

Hep ML Living review
(~1.4k papers & counting)
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Jets

—

Image credit: E. Metodiev

.
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Jets

® \\le can never observe “bare” quarks/gluons due
to a QCD phenomenon called color

confinement

Image credit: E. Metodiev

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

18


https://www.ericmetodiev.com/post/jetformation/

Jets

® \\le can never observe “bare” quarks/gluons due
to a QCD phenomenon called color

confinement

Fragmentation
\ e partons @)D @ ...

Image credit: E. Metodiev
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Jets )
® \\le can never observe “bare” quarks/gluons due
to a QCD phenomenon called color )
: / 7/
confinement s //./ P
AR AR
RPN
VaRAd ya e
/7 07 s
s s P
/./ /s 7
7 s s 7
7~ . /'/
‘O /. ‘/ P /.'
O PR
° P R —~
'.o.. /‘//';‘/./'/
0’. - o} . — ~ // a
9 -
O°_O5 5T
q /O VOOC
@ ~ Hadronization
) Fragmentation  hadrons PE .
e partons @)@ @ ...
Image credit: E. Metodiev
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Jets

® \\le can never observe “bare” quarks/gluons due
to a QCD phenomenon called color

confinement

e\ F tati
ragmentation
\ e partons @)@ @ ...

Image credit: E. Metodiev

Detection

Hadronization

hadrons @@
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Jets

® \\le can never observe “bare” quarks/gluons due

to a QCD phenomenon called color
confinement
® \\Ve detect composite objects called jets as a

proxy for the underlying g/g

’V

Detection

Hadronization

‘\ Fragmentation hadrons @GP ...
e partons @)@ @ ...

Image credit: E. Metodiev
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Jets

® \\le can never observe “bare” quarks/gluons due
to a QCD phenomenon called color
confinement

® \\Ve detect composite objects called jets as a
proxy for the underlying g/g

® Jet substructure can tell us about the initiating

particle

~ @ :)::rns 000 ..

Image credit: E. Metodiev

Small-radius jets , Large-radius jet

“Two-prong” jet

More boosted (higher momentum) —
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Semi-supervised
spaces

Building a space “by hand” for anomaly detection
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After ~15 years of LHC physics, no clear experimental target for new physics

An ideal CMS search

“Theory Space”

20

February 14th, 2025

IAIFI Colloguium

We should make our searches as broad as possible — model agnostic
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How an embedding might help i A

CMS CMS Experiment at the LHC, CERN

Data recorded: 2015-Sep-28 06:09:43.129280 GMT
Run / Event / LS: 257645 / 1610868539 / 1073

Image credit: CERN

Why would an embedding be helpful for these searches?

1. Anomaly detection in high-dim datasets is fundamentally

hard: difficult to model, more “tails”, sparse

2. Partially alleviate “performance tradeoft” btwn low-level

particle info & hand-constructed observables”

3. Interpretation might be easier, depending on how

iInterpretable you can make your space

Sam Bright-Thonney
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Designing a search i A




Designing a search

® \Vhat’s the most generic thing we can look for?

» A new particle (anything)

i A
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Designing a search

® \Vhat’s the most generic thing we can look for?
» A new particle (anything)

® \Vhat physical signature”’
» Iwo-body decay, I.e. a resonance

» Assume only hadronic decays (jets)

i A

(pa +pB)2 = M~

Sam Bright-Thonney IAIFI Colloquium
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Designing a search

> 1UE I | =
® -
o 10°F E
® \What’s the most generic thing we can look for? = 0o = 3TeV_
- . S 104;— —;
» A new particle (anything) I :
1035— =
® \What physical signature? 10° 3
» Iwo-body decay, I.e. a resonance L L
_ | S eh0 50004000 5000 6000
» Assume only hadronic decays (jets) M;; [GeV]

® \We call this a “dijet resonance” — performing a bump

hunt
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Designing a search

® \Vhat’s the most generic thing we can look for?
» A new particle (anything)

® \Vhat physical signature”’
» Iwo-body decay, I.e. a resonance
» Assume only hadronic decays (jets)

® \We call this a “dijet resonance” — performing a bump

hunt

p Easier said than done — QCD (boring stuff) is a huge

background

Events / 100 GeV

Events / 100 GeV

TV
10°
10°
10*
10°

102

10

[TTITI LIIIIIII| IIIIIIII| IIIIIIII| IIIIIIII| [ TTHI IIIIIIII| T TTTTm

I

| I | | | 1 I | 1 1 | I 1 | | 1 I | | | 1 1 1
2000 3000 4000 5000 6000

[ TTTHH

— TTIT T TTTTI

| IIIIIIII| IIIIIIII| IIIIIIII| IIIIIIII| [ TTI

SM Background

Small signal!

IIIIII Y. . IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII [ 1L

o T b g Py e gy by gy By g o [0

||
2000 3000 4000 5000 6000
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Semi-supervised searches with QUAK [lli1 Al

SM-like unsupervised loss
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Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds

» The “high loss” region is where we expect signal —

potentially very sensitive!

SM-like unsupervised loss
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Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds
» The “high loss” region is where we expect signal —
potentially very sensitive!

p But in reality, tails are populated by all kinds of

uninteresting anomalies

Background tails?

Signal?
Rare SM?
Glitches?

SM-like unsupervised loss
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Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds

» The “high loss” region is where we expect signal —

potentially very sensitive!
p But in reality, tails are populated by all kinds of

uninteresting anomalies

® Semi-supervised : \We “know” what new physics could/

Background tails?

would look like

Signal?
Rare SM?

Glitches?

» Add a new “signal-like” axis or axes trained on

benchmark BSM signals
Real
Data

BSM-like unsupervised loss

N

SM-like unsupervised loss
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Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds

» The “high loss” region is where we expect signal —
Data

potentially very sensitive!

Glitches
p But in reality, tails are populated by all kinds of

uninteresting anomalies

® Semi-supervised : \We “know” what new physics could/
would look like
» Add a new “signal-like” axis or axes trained on

benchmark BSM signals

» Provides a “physics prior” — include wide enough set

BSM-like unsupervised loss

of priors to enable “interpolation”

SM-like unsupervised loss
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Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds

» The “high loss” region is where we expect signal —

Data
potentially very sensitive!
. . . . Glitches
p But in reality, tails are populated by all kinds of
uninteresting anomalies
Bkg Realistic
® Semi-supervised : We “know” what new physics could/ BSM signals

would look like -
|

» Add a new “signal-like” axis or axes trained on 9
benchmark BSM signals

» Provides a “physics prior” — include wide enough set

BSM-like unsupervised loss

of priors to enable “interpolation”

SM-like unsupervised loss

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 23



Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds
» The “high loss” region is where we expect signal — e "Vl T T s
7)) » Data 1
potentially very sensitive! n :
o | k=, Glitches
» But in reality, tails are populated by all kinds of - :
i
uninteresting anomalies g -
- '
Q Bkg Realistic !
® Semi-supervised : \We “know” what new physics could/ % BSM signals I
would look like 2 - -
|
» Add a new “signal-like” axis or axes trained on 3 g i
benchmark BSM signals i—‘ :
i
" (11 - - J) " " I
» Provides a “physics prior” — include wide enough set ‘% q Search! I
of priors to enable “interpolation” m $ ’

aam E EE EE E Em»®

SM-like unsupervised loss
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Semi-supervised searches with QUAK [lli1 Al

® |magine you train an unsupervised model on SM

packgrounds

» The “high loss” region is where we expect signal —
potentially very sensitive!

p But in reality, tails are populated by all kinds of

uninteresting anomalies

® Semi-supervised : \We “know” what new physics could/
would look like

» Add a new “signal-like” axis or axes trained on

benchmark BSM signals

» Provides a “physics prior” — include wide enough set

of priors to enable “interpolation”

® “Quasi Anomalous Knowledge” techniqgue — QUAK!

Anomalous features /\

3D QUAK
Space

’:’> Signal #1

Background

Signal #2 Loss

Background Loss

Signal Loss

2D QUAK

Space JHEP 06 (2021) 030

Selection

0,0 Background Loss
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Choosing physics priors

P \ Jet
\ n _
B
A
/ CY»
P —
Jet
Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 24
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Choosing physics priors || e

. p . Jet
® Relevant physical parameters: x '
1. m, — should be as agnostic as possible about this! 5 (2 —
2. mpg, m~ — also agnostic, but “aware” that they are A
resonant & much lighter than A /
P / —
Jet

Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 24



Choosing physics priors || e

® Relevant physical parameters: P \ Jet
1. m, — should be as agnostic as possible about this! \\ 5 (2 —
2. mpg, m~ — also agnostic, but “aware” that they are A
resonant & much lighter than A /
3. B & C decay chains — “substructure topology” of an P / S _
event; should be sensitive to many possibilities! Jet

“1 +1 J) “2+1 ) “3+3” “2+5” e C

PeRR
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Choosing physics priors || e

. p . Jet
® Relevant physical parameters: x '
1. m, — should be as agnostic as possible about this! 5 (2 —
2. mpg, m~ — also agnostic, but “aware” that they are A
resonant & much lighter than A /
3. B & C decay chains — “substructure topology” of an P / X —
event; should be sensitive to many possibilities! Jet
Sample Prongs B and C mass points (GeV)
- ®© ©® ©® €
Q* — qW’ 142 My = 25, 80,170,400
XYY, Y)Y »qq  2+2 My,y" = 25,80,170,400 “1+1” “2+17 “3+3” “2+5”  etc..

Wk > WR, R—-WW  2+4 Mpr = 170,400

W' — B/t, B' — bZ 3+3 Mp = 25,80,170,400
7' — T’T’, TN — tZ 5+5 Mz = 400
Y — HH, H — tt 6+6 My = 400
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Training the axes

Inputs (each jet)

~_ MsD,j B
P = s T21, T32, T43, TS =
PT,5

7’ ~ 7 ~

N\
\
/ \ | >
/ \ /
/
7/

7
/ / \
/ \ / \
1 \ | \
| ! | |
\ I \ I
\ >
\
\

f1(2o) fi(2zi—1) fit1(2:)
(®) (=)
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X

. = f1(2zo) fi(Zi-1) fiv1(z:)
Training the axes (= ® (=) @
/ R / *\ A W
® QUAK space axes implemented with normalizing flows . /I\ | /L/\ | /\/\f\,\

. . . . \\ | /I \\ | ’/I \\ >/I
» Density estimation models (unsupervised)
zo ~ Po(2o) z; ~ p;i(2;) zg ~ Pk (2ZK)

Inputs (each jet)

__MsD,j _
P = s T21s T332y T43, TS =
PT,5
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Training the axes i A

QUAK space axes
® QUAK space axes implemented with normalizing flows Background
SM Bk
» Density estimation models (unsupervised) Events Togp (QX)
B

» Evaluate —log p(x) for each event — signal/bkg-

like losses

—_—

Bkg-like loss

Inputs (each jet)

__MsD,j _
P = s T21s T332y T43, TS =
PT,5
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Training the axes U

QUAK space axes
® QUAK space axes implemented with normalizing flows Background
SM Bk
» Density estimation models (unsupervised) Events Togp (QX)
B

» Evaluate —log p(x) for each event — signal/bkg- T ——
A — » B T

like losses & g 8
T -—> Signal-like 1
o ? g x _logpSl(X)
Q
—
e
C
O
N
Bkg-like loss

Inputs (each jet)

__MsD,j _
P = s T21s T332y T43, TS =
PT,5
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Training the axes i A

QUAK space axes
® QUAK space axes implemented with normalizing flows Background
SM Bk
» Density estimation models (unsupervised) Events Togp (QX)
B

» Evaluate —log p(x) for each event — signal/bkg- T ——
A — » B T

688
P28

like losses

-—> Signal-like 1

—log pg (X)

-—> Signal-like 2
—log pg (X)

Signal-like 1

Bkg-like loss

Inputs (each jet)

__MsD,j _
P = s T21s T332y T43, TS =
PT,5
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Training the axes U

QUAK space axes

® QUAK space axes implemented with normalizing flows Background
p Density estimation models (unsupervised) Events

» Evaluate —log p(x) for each event — signal/bkg-

SM Bkg
—log pp(x)

-—> Signal-like 1
—log pg (X)

my, = 170,mz = 170

688
P28

like losses

P
X
%
c
S
(7))
Signal-like 2
Bkg-like loss —log pg,(x)
o
Inputs (each jet)
m ; \/ o o ®
P = SDJ) 721, T32, T43, TS =
P,
o o ®
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Training the axes

® QUAK space axes implemented with normalizing flows

» Density estimation models (unsupervised)

» Evaluate —log p(x) for each event — signal/bkg-

like losses

QUAK space axes
Background
Events
my, = 170,mz = 170

688
P28

SM Bkg
—log pp(x)

-—> Signal-like 1
—log pg (X)

- _
©
)
X 5
T [}
© Le;
= Q
2 <
7p) O Reduce
= Signal-like 2 to 1D
Bkg-like loss Bkg-like loss —logpsz(x)
®
Inputs (each jet)
P = D ,  T21, T32, T43, TS =
-
5J o o o
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Training the axes

® QUAK space axes implemented with normalizing flows

» Density estimation models (unsupervised)

» Evaluate —log p(x) for each event — signal/bkg-

like losses

135°

Signal-like

- Background MC

X-YY’ Signhal MC
— W'->B't Signal MC
= Y—HH Signal MC

o =
— O 180°
i N Bkg-like
© T
= Q
2 o
n 0
=
Bkg-like loss Bkg-like loss
225° 315°
Inputs (each jet)
msp,;
P = ,  T21, T32, T43, TS = -y
pr,j
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Bump hunting i A

To search for a resonance with mass iy, we need a consistent & unbiased procedure for selecting anomalous events

90°

- Selection Wedge

15°

—— Background MC
X-=YY' Signal MC

— W’'-B't’ Signal MC

— Y-HH Signal MC

14 -30°
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A.U.

Bump hunting

To search for a resonance with mass iy, we need a consistent & unbiased procedure for selecting anomalous events

SR & Sideband for my =3 TeV >~ e

1 Sideband
e SR

- XYY’
—— mpy

1073 A

1074 -

15°

—— Background MC
X-=YY' Signal MC

— W’'-B't’ Signal MC

— Y-HH Signal MC

107> A

2000 2500 3000 3500 4000 4500 5000
ij [GeV]

14 -30°

Step 1
Define a signal region and sideband

around my — SB should be bkg-
dominated

- Selection Wedge

i A
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Bump hunting

i A

To search for a resonance with mass iy, we need a consistent & unbiased procedure for selecting anomalous events

SR & Sideband for my =3 TeV a 75° - Selection Wedge

1 Sideband
1 SR

1073 A

1074 -

A.U.

15°

B Sideband Template
I Selected Bins
-—  Selection Contour

I
|
I
I
I
I
l

107> A

2000 2500 3000 3500 4000 4500 5000

ij [GeV]
Step 1 Step 2
Define a signal region and sideband Sideband events define a template in

around my; — SB should be bkg- QUAK space; sparsest bins define a

dominated selection contour for anomalous events
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Bump hunting

i A

To search for a resonance with mass iy, we need a consistent & unbiased procedure for selecting anomalous events

SR & Sildeband for my=3 TeV . 75° . Selection Wedge
k | m Sideband > RS o T
! igna =
10-3 | 1 SR ) (f Bkg B
] ' 0 template —=
| = template + =
| — 10°A /\ =
! % = =
= i m |
. 10—4'; Q>) 104 ? . %
) mRL e -
i B Sideband Template 10° ;— —;
107* - / | [ Selected Bins : =
;| \\ 0 —— Selection Contour | 10 = =
I | = -
| 1 _ JF;
| . | | | 150 PR E R R E U SRR B . i
2000 2500 3000 3500 4000 4500 5000 <0U0E S000 4000 5000 6000
ij [GeV] M]] [GQV]
Step 1 Step 2 Step 3
Define a signal region and sideband Sideband events define a template in Select events based on contour &
around my — SB should be bkg- QUAK space; sparsest bins define a construct dijet mass spectrum
dominated selection contour for anomalous events  Run a fit to look for a bump
Sam Bright-Thonney IAIFI Colloquium February 14th, 2025 26



Results U Fi

We repeat this procedure on real data for m1,; between 1.8 and 6 TeV, and find...
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Results U Fi

We repeat this procedure on real data for m1,; between 1.8 and 6 TeV, and find...

- CMS Preliminary
% 10 é__l_ | [ [ [ [ | [
‘© - N M
= 107 — T
Q - s Observed p-values for signal-like excesses*
1072 y E
i s Reference p-values for 0 - 5 sigma
10—
Anything less than 3o
-4 - ) doesn’t raise eyebrows!
10-6F -
50
10—7 | | | | | | | | | | | | | | ]
2000 3000 4000 5000 6000

Mass Hypothesis [GeV]

*local significance
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Results U Fi

We repeat this procedure on real data for m1,; between 1.8 and 6 TeV, and find...

- CMS Preliminary 7
q) 10 = ! | ! ! ! ! | ! i Oé_ = > 10 | I I | | -
o — - ()] -
C_SU B E O 106_ —;
> qo- LT T T S E —+— Data =
o ~ 5L #== signal + Background Fit
N " _ N S E = —— Signal =
102k S 10t —— Background _
: i =
i 10° & —=
103 T T T T T T T T = =
: E 10° E
104 ~ 10 —
- 40 - — . ~
5 1 s L Chi2/ndf = 31.78/29 = 1.10 3
5] ] =Prob = 0.330 =
105 - q:.!..!!!..!.,....,....,!!!:
- - = ok -
-6 _ B rlO Tk _
1076} ; o5 OF :
. Bo Q| —2[ -
" - —4 5000 3000 ~ 4000 5000 6000
10—7 | | | | | | | | | | | | | ‘e . .
2000 3000 4000 5000 6000 Dijet invariant mass (GeV)

Mass Hypothesis [GeV]

*local significance
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Sensitivity to new signals i A

No new physics in the data, but more importantly we can demonstrate our sensitivity to potential
signals with injections

CMS Simulation Preliminary (13 TeV)
e T T T I____i_ﬁ_,l‘_[____'l_,_l_ A e
g 107"
o
X->YY =49 \
1073 VAE-QR
—+— CWolLa Hunting
—o— TNT
107~ _+~ CATHODE
—#— CATHODE-b
o7l QUAK

QUAK: Model Specific

10-9k ¢ 2-prong (T21,Msp) .60
3-prong (T2, Mgp)
-®- |nclusive
10-111 B
_____ .70
| | | | | | | | | | | | |
5 0 5 20 25

Cross Section (fb)

X =YY Y —=22¢Y — 2
2+2-prong, my = 3 TeV, my = my, = 170 GeV
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Sensitivity to new signals

No new physics in the data, but more importantly we can demonstrate our sensitivity to potential

signals

with Injections

CMS Simulation Preliminary
L L o

X->YY =49
- VAE-QR
CWola Hunting
TNT

CATHODE
CATHODE-b
QUAK

t 14t

QUAK: Model Specific

| -><- 2-prong (To1,Mgp) % . .60
3-prong (Ts2, Msp)
-®-- Inclusive
_____ 70
| | | | | | | | | | | | |
5 0 5 20 25

Cross Section (fb)

X =YY Y —=22¢Y — 2
2+2-prong, my = 3 TeV, my = my, = 170 GeV

i A

- = VAE-QR

CMS Simulation Preliminary (13 TeV)
| ! ! ! | ! ! ! | ! ! ! ! ! ! ! ! ! ! !

o
——
——
e
——
——
—

——
e
—

W' - B't - bZt

CWolLa Hunting
TNT
CATHODE

CATHODE-b

t 1ttt

B QUAK ‘\\: |
QUAK: Model Specific \\
| ->¢- 2-prong (T21, Mgp) 6a

3-prong (T32, Mgp)
-®-- |Inclusive

..... /70

1 1 1 | 1 1 |
-20 0 20 40 60 80 100
Cross Section (fb)

W' — B't, B' — bZ

3+3-prong, my, = 3 TeV, my = 400 GeV
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95% CL Upper Limit on o (fb)
3 3 3 3 3

—h
<

N

Improvement wrt Inclusive
\®)

CMS Preliminary 138fb~1 (13 TeV)
= Limits on A -BC, m(A) =3 TeV E
f Expected +10 # = VAE-QR
N % Observed ® * CWola Hunting i
® % Inclusive B x TNT
B % 2-prong (T21, Mgp) ® x CATHODE
3-prong (Tsz, Msp) ® x CATHODE-b

Dedicated Wk search,

PRD 106 (2022)

QUAK - General

o
T

.
L | S DR B
B L Y T
IR T i i}i )
e .

) * li } l x l » e l_—
—————— E——i—i—l————————————g——— ——i—i- _—_____¥___i__lii- -—-——————————————-i————
X_)Y¢/_)4q W/—)Bllt—)bZt Wkk—)V\llR—)SW Y:)HlH—)4t
(2+2) (3+3) (2+4) (6+6)

Signal Model

ma = 3'1eV

95% CL Upper Limit on o (fb)

— — — — —
o o o o o
— \V) w & (&)

—
o

o
I

N

Improvement wrt Inclusive

138fb~1 (13 TeV

HH HEH

x

= 2 3

CMS Preliminary

Limits on A -BC, m(A)

Expected +10
Observed
Inclusive

2-prong (21, Mgp)
3-prong (32, Mgp)

Dedicated Wkyk search,

PRD 106 (2022)

ixi

=5TeV

VAE-QR

TNT

HEH HIH HIH HIH HEH
X % % X

CWola Hunting

CATHODE
CATHODE-b

QUAK - General

\®)
| | |

o
| L}

% ___!____iiz__ 1 ::'.'!:;:-. ::.—i:::::i-"[—_:% :
_______________ . ik
Ay , :
*"E"I' ‘ iﬁ; __________ i lﬁ;.l _L"-
XoYY o4q W oB1obZt  WeoWR3W Y HH-4t
(2+2) (3+3) (2+4) (6+6)
Signal Model

ma = H'leV

First collider limits for nearly all of these benchmark signals! All with a single analysis framework
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Self-supervised
spaces

Built “by the machine”
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Self-supervised approach T A

Signal-like 1
?2??

Background-like 299

QUAK-style FM-style

® Axes defined by our choice of priors ® Axes are learned via self-supervision

® Space is interpretable but is it optimal? ® Not interpretable, but perhaps the model

can learn/encode very sophisticated things
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Anomaly detection

??7?

???

Our space no longer has human-interpretable

structure - how do we do anomaly detection?

i A
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Anomaly detection

%

. Bkg-only reference INPUT

Data sample D

o

Data

(within data) !

103

&3]

107}

1020 | |1

New physics

0.0

0.2

10°¢

10°H
k2] E

S 102K

Reference sample R

OUTPUT

Dist. log ratio

/2,
&
i{l
Gt

ot /N

| data / reference
Train D vs. R n(z|T)
f(z; W) ~ log [

Test statistic ¢
computed on the

@~

o data sample D
N #(D) = —2Min L[]
0.10¢ 4 Neurons
P(t|R) Excess in the Tail
0.08} No cut
< 0.06} Xia
Answer: statistical method driven by ML ™ oodl ++ PAINP)
. . b
NPLM (Ask Gaia all about this) oo i Iy LS
090 20 40 60 80
t
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Building the space: contrastive learning llil’ £
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Building the space: contrastive learning llil’ £

® \Vant to build this space in a self-supervised manner —

we opt for contrastive learning
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Building the space: contrastive learning llil’ £

® \Vant to build this space in a self-supervised manner —
we opt for contrastive learning

® Fundamentally based on data augmentations

» For an input x, create an “augmented” version x’ and

teach a neural network to treat x and x’ in the same

way
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Building the space: contrastive learning llil’ £

® \Vant to build this space in a self-supervised manner —
we opt for contrastive learning

® Fundamentally based on data augmentations

» For an input X, create an “augmented” version x’ and

Cats

teach a neural network to treat x and x’in the same
way
p All other data points are negative samples and should

be pushed apart
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(Supervised) SImCLR

’€Z,j — — lOg

i A

Maximize agreement

Zi > Zj
h; <— Representation —» h;

t A
f() £()
Z; 5
‘~ 7 { H(\/

exp(sim(z;, z;)/7)

Skt Lkt exp(sim(2s, 2k) /7)

2002.05709
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https://arxiv.org/abs/2002.05709

G

(Supervised) SIimCLR UTe

® SIMCLR is a popular contrastive learning setup .. Maximize agreement -
» Cosine similarity Z, Z; measures alignment g(.)T Tg(,)
h; <— Representation —» h;
® But what augmentations are “best” for particle physics” () A A £()
p Boosts? Rotations” Energy smearing? ... : -
ZT; L
2o t‘ 9

exp(sim(zz-, z;)/T)

]l[k;,gz] exp(sim(z;, zx)/7)

t; ; = —log

2002.05709
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(Supervised) SIMCLR

® SIMCLR is a popular contrastive learning setup

» Cosine similarity Z, measures alignment

]

® But what augmentations are “best” for particle physics”

p Boosts”? Rotations” Energy smearing? ...

® \\le do have an abundance of labeled data from
simulations
» Motivates a supervised approach — positive pairs

are drawn from the same class of objects

= O

Negatives

Anchor Negatives Anchor

¢ o
3

Positive
'ﬁ
&
b= B

.
. ,.""".
o*
.
»

.

.

L
-
L]
.

Posmves

.
-
-
- -
- -
-
-
-
.
-
. o
. R
., o
. .
.-"\‘

Self Supervised Contrastive Supervised Contrastive

exp (z;*2p/T)

sup 2 : Sup 2 :
out T [’out ')

Z log

exp (2; *24/7)

el ZEI aEA(z)

pEP(Z)

2004.11362
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Training on jets i A

omm Em E EmEEEm o== == =====, O ]ran supervised SIMCLR embeddings of individual

r — 1 r, 1
| <boson N QCb jets from four different classes (common SM
i I _ i L. 0
¥ oo Z = qq q/9
1, Yo U , processes)
:04 e . : ! e Use the particle transformer architecture

SO T s i an 021 []
0 “ 0 ‘ i i » Full attention between all particles in a jet (up to

R A » 17 input features for each particle (kinematic, ID,
P

. .
B |t beq : [ WS g trajectory)
g - Top quark : W boson | | |
I : p Variable-dim embedding spaces
1 1 t — bqq’ a ! W = qq’
I - — - :u N Y 210 P S— L blocks Class token
I an s ! $ 001 N — — .
I 0.2 : Particle Particle Particle i Clas§ —> Clas§ !

[ i » Particles = Attention Attention Attention Agfngn AETE:;EH E % —>
‘ , T Block Block Block ) r;-) 3

~-------;-'

Interactions —>»

(Embedding) (Embeddlng)

(a) Particle Transformer
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The learned space U F-

t-SNE embedding of 8-dimensional contrastive space, T = 0.05

40 A

30 A

20 A

2

10 A

Imension

—10 -

tSNE D

_20 -

_30 -

W t-bgg mmm H-bb

~40- T M Z-qq

—40 _30 20 _10 0 10 20 30 40
tSNE Dimension 1
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The learned space

t-SNE embedding of 8-dimensional contrastive space, T = 0.05

0.4 1 q/g 40 - 0.4 W N qq/ 0.4 1 Z — q
0.7 - 0.2 4 ;‘
30 S 0.0 S 001
S 0.01 @ sl
-0.2 - 20 - o —0.41
—04  -02 (i: 0.2 0.4 —04 702 2‘3 0-2 0-4
—-0.4 - N
| | | | | - 10 ~
-0.4 -0.2 0.0 0.2 0.4 @)
An N
c
Q
e 0
.5
Ll
0.4 - / P
_10 -
t — bqq N
0.2 -
S 0.0
-0.2 - S A Mﬁ.i"ﬁ*{??
\ 3
o B q/9
04 mw t-bgqg’ WM H-bb
. . . . . —40 A B Z-qq
-0.4 -0.2 0.0 0.2 0.4
An T T T T T T T T T
—-40 —30 —-20 —10 0 10 20 30 40
tSNE Dimension 1
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The learned space

t-SNE embedding of 8-dimensional contrastive space, T = 0.05

0.4 - q/g 40 - 0.4 1 W N qq/ 0.4 1 Z — qq
0o 0.2 - 0.2 A (\"
30 S 0.0 S 001
S 0.01 @ sl
-0.2 - 20 - o —0.41
~0.4 N
| | | | | — 10 -
-0.4 -0.2 0.0 0.2 0.4 C_D
An 2 | | | | '
g Unseen in training!
a _
0.4 / % 0-41 H _> bb
t — bqq n —10 -
-
0.2 - 0.2 -
S 00- S 00-
-0.2 - 4 S e N
oy BN a/g ~0.2 - $
0l W t-bgg’ WM H-bb :
, , . . . —40 A Bl Z-qq
-0.4 -0.2 0.0 0.2 0.4 _0.4-
An T T T T T T T T T
—-40 —30 —-20 —10 0 10 20 30 40 ' ' . . '
tSNE Dimension 1 —0.4 —0.2 2-,? 0.2 0.4
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“Discovering” the Higgs

Can we use this space to “discover” H — bb ?

p Create “reference” datasets using a combination of
QCD, W, Z, and top quark backgrounds

» Inject increasing numbers of H — bb jets into “test”

datasets with the same composition as the reference

d= 8, t = 005, NREF - 1OM, NBKG — 025M, NSIG =500

size:
=1 median: 47.64, std: 10.5
0.04- asymptotic Z = -0.12 (+0.13/-0.14)
NSIG =500
size: 100
:>) 1 median: 151.16, std: 24.58
- asymptotic Z = 6.87 (+0.15/-0.15)
= 0.03]1 empirical Z > 2.33 (+inf/-0.27)
:5 ] Xig
©
e
O 0.02-
(-
0.01]
0.00 -.---m--.--
150 200 250

i A
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“Discovering” the Higgs

Can we use this space to “discover” H — bb ?

p Create “reference” datasets using a combination of

QCD, W, Z, and top quark backgrounds

» Inject increasing numbers of H — bb jets into “test”

datasets with the same composition as the reference

d= 8, t = 005, NREF - 1OM, NBKG — 025M, NSIG =500

N_S|G =180
Slze:
=7 median: 47.64, std: 10.5

Ul

NPLM Z score (100 toys)
S

i A

(@)

Nref —_ 1M, kag — O.ZSM

— C

C

— C

Contrastive Training Parameters .
—— T =0.05 R
--—-- T=0.1 S

= 38
=16
= 32

0.04- asymptotic Z = -0.12 (+0.13/-0.14)
NSIG = 500 3 T
size: 100

> [ median: 151.16, std: 24.58
- asymptotic Z = 6.87 (+0.15/-0.15)
= 0.03]1 empirical Z > 2.33 (+inf/-0.27) 5.
o pi >
o) m— X 19
©
Q
QO 0.02] + 1 -
|
ﬂ* i -

0.01- 04— . | | | |

0) 100 200 300 400 500 600
Number of injected signal events
0.00 -.---m--.--
150 200 250
t
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How does this measure up? N

Anomaly detection w/ contrastive space Dedicated CMS search
Nrer = 1M, Noig = 0.25M

8 «10° 138 fb™ (13 TeV) 138 fb™! (13 TeV)
Contrastlve Training Parameters = - > 180
d=8 T =005 o . CMS ¢ Data [ ]BKkg. unc. 0] - CMS ¢ Data [ |Bkg. unc.
7 _ _ ~ 3% ppB Fail [JQCD [JW(qq) ~ 160~ pDB Pass [(JQCD [JW(aq)
d=16 ---- T=0.1 2 _ VBF category [0Z(qq) WZ(bb) 2 - VBF category [0Z(qq) MZ(bb)
_______ o - Mt [ Single t s 140 Wit @ Single t
? 6- o O @EVV  [JVH +ttH N = EVV  [JVH +ttH
> n -..ggF —VBF F b=
= 30— 100
S5 - 80— ‘
— — —
= 20— 60— + '
Q - -
S ’ 10: 40
O — B
n B 20— 2407 0801
N 31 0— L ! 1 L | L ! 1 : A_..—JJ—'_I |
= . . .
i 5 15F 3
o 1E+ ©
2 = g =
= 2  05E 2
m 0 m
o —-0.5F @
1 T 1 I =
e _ L L L L 1 L L L 9, J— = L 1 1 1 1 1 1 L
-1.90 60 80 100 120 140 160 180 200 3060 80 100 120 140 160 180 200
0 , , , . . Mgp [GeV] Mg, [GeV]
0 100 200 300 400 500 600 -
Number of injected signal events Observed H — bb in ggF + VBF at 40 on CMS Run 2 dataset,

Assuming Z o lumi, we’d expect 4o at 0.0056% estimated 0.0053% signal-to-bkg

signal-to-bkg for CMS Run 2 luminosit
J J y Dedicated search: hand-tuned selection, ggF/VBF categorization,

One contrastive training + NPLM dedicated jet tagger, etc.

NB: these two setups are only very approximately comparable!
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Robustness

Simulations are not to be trusted
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A problematic possibility

i A
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A problematic possibility U

if our simulations are wrong”

Real data

an impact

sensitivity of downstream tasks (e.g. N

- Simulation ® Lasiest to train an embedding on simulation — what
» Even subtle/small systematic differences can have

» Needs to be accounted for; might reduce the

~THY)
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A problematic possibility

- Simulation

Real data

i A

® [Fasiest to train an embedding on simulation — what

if our simulations are wrong”

» Even subtle/small systematic differences can have

an impact

» Needs to be accounted for; might reduce the

sensitivity of downstream tasks (e.g. N

® One option is reweighting simulation

» W(X) = pp(X)/Dgin(X)

~THY)

» Works well enough, but cannot account for

discrepancies in the tail!
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Morphing a contrastive space

—— Background (R&D)
—— Signal (Z-XY)
—— Background (BB1)

Latent 2

Latent 3
N o ¢ QO

Latent 4

Latent 1 Latent 2 Latent 3 Latent 4

Contrastive space trained on “MC” treats “data”
differently — discrepancies in learned space

i A
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Morphing a contrastive space

Latent 2

Latent 3

Latent 4

Mitigate differences with flow-based
“chained quantile morphing” method

2309.15912

—— Background (Morphed R&D)
—— Signal (Z-XY)
—— Background (BB1)

/b— ’_._I_I_I_r'/z:j:‘jiL
ORI TN TR o » O 5 N 0 N A % o 0 S 9

Latent 1 Latent 2 Latent 3 Latent 4

Contrastive space trained on “MC” treats “data”
differently — discrepancies in learned space

i A
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Morphing a contrastive space

Mitigate differences with flow-based
“chained quantile morphing” method

2309.15912

Latent 2

—— Background (Morphed R&D)
—— Signal (Z-XY)
—— Background (BB1)

Latent 4

Latent 3
N o ¢ QO

Latent 1

Latent 2 Latent 3 Latent 4

Contrastive space trained on “MC” treats “data”
differently — discrepancies in learned space

_—

i A

Classifier Sample AUC

. R&D 0.954
ParticleNet Tagger nR1 0.931
R&D 0.952

ParticleNet Latent Tagger BB1 0.928
Morphed R&D | 0.928

R&D 0.910

High-Level Tagger BB1 0.872
Morphed R&D | 0.873

A.U.

10! ]

100 ]

2.0
1.5 A

1.0

0.5 1

0.0

= BB1

—1 R&D
1 Corrected R&D

0.2

0.4 0.6 0.8

1.0

0.0

0.2

0.4 0.6 0.8

Contrastive Classifier Score

1.0
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The future

Where do we go from here?
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One space to rule them all Il A

07l ¢ QUAK

90°
t-SNE embedding of 8-dimensional contrastive space, T = 0.05
40
135° ‘ 45°
30' s e 3 7 \',« % =
SERRES IS T <. —— Background MC
o T i o aeh : i = X-YY' Signal MC
SN e S Higgs 7= WoBSlansi e
eSS N e —— Y-HH Signal MC ;¥
T N A : " & < - : AL R\ 6
N “ » " )
c 10-
o -
0
2 w physics
g 0 180° 0°
&
L
& -10-
-+t
_20_
—30 1 Ve
a/g s W-qq
B t-bgq’ WM H-bb 225° 315°
—40 Bl Z-q9
—40  -30  -20 ~10 0 10 20 30 40
tSNE Dimension 1 270°
8 Nrer = 1M, Npig = O'ZSM CMS Simulation Preliminary (13 TeV)
Contrastive Training Parameters i g T e - o ‘1‘0
© 1L BN |
7. — d=38 T =0.05 c?(; 10
—— d=16 ---- T=0.1 o ,
....... X->YY -4q \ \
Ny 103} -=- VAE-QR \ \\ TR T
' —— CWolLa Hunting
: One space, many downstream tasks! P |
1071 — CATHODE B
—+#— CATHODE-b

w

. . - \ —
Early evidence that embeddings are a promising tool for - QUAK: Mol Spectc \ | \

6 a

10-9}- ->< 2-prong (t21, msp)

NPLM Z score (100 toys)
S

3-prong (132, Mgp)

collider physics!

N

S e wmw a  we Lots of exciting work to come & ongoing! S O U3

Number of injected signal events
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Some future directions

A few things we’re hoping to pursue

1. Develop “supervised” contrastive embedding
into full-scale demonstration for a realistic LHC
search/measurement

2. Learn embeddings for a “Level 1 foundation

model” — isolate anomalies & rare SM In real

sion 2

tSNE Dimen

i A

t-SNE embedding of 8-dimensional contrastive space, T = 0.05

Emerging Al frontier

Bl W-qq
t-bqq’ WM H-bb

his 4 ml

2103.05579

Anomaly trigger

time' FastML
3. Contrastive space for GWAK v2 at LIGO - online | 3
anomaly detection & more :
‘g
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A new workflow for HEP U F.

0.5

Simulated Jet Neural Embedding (R?, 1)
Extrapolation

0-41 2208.05484
[\
k
5
QCD nominal Qg
2403.07066 e QCDherwig
oS . H nominal 8
H herwig g
52

0.0 0.2 0.4
Embed Dimension 1

0.5 mg=1.1,my=0.1[TeV] \
----- mg=1.1,m,=0.5[TeV] T
s mg=1.1,m,=0.9[TeV]
0.0 —== mg=1.6,m,=0.1[TeV] R
mg=1.6,m,=0.5[TeV] v
mg=1.6,my=0.9 [TeV] SB SR SB m
—_ myi=2.1,m,=0.1[TeV]
-0.5 ‘- * Pdata(z|m € SB) Pdata(z|m € SB)
o e ~ pglalm e 5p)  Pa(Im €SB 0 € )
o
2 -1.0
(]
: T %
=2 —1.51 //
~ o . //
.E © 0 6 P
" 20 A =0
S ~
5 -25 L SN
2407.20315 . "
: Anomaly detection
e ‘i\ ) mm W-qq _30 T \_) *
G ‘. B t-bgq WM H-bb T T T T T T T T T
- z-ad 00 05 10 15 20 25 3.0 35 4.0 = =
EA Latent dimension 1 Precision measurements

BSM physics searches

Noisy, high-dim, Self-organized, physically meaningful, Any analysis we want,

complex physics inputs and expressive latent features faster & easier
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https://arxiv.org/pdf/2403.07066
https://arxiv.org/abs/2208.05484

A new workflow for HEP U F.
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* Nepmension1 " Latent dimension 1 Pr60|8|on measu rements

BSM physics searches

Noisy, high-dim, Self-organized, physically meaningful, Any analysis we want,

complex physics inputs and expressive latent features faster & easier

Lots of room for
new ideas!
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Talk to me about... U Fi

Al things
Physics things J

: : . ® Fundamental guestions of the "how does
® Representation learning for collider

ohysics and/or LIGO this work™ variety (toy models, etc.)

® Sclf-supervised learning; how trainin
® [raining/deploying “Foundation models” D J J

11

objective shapes a model’s “understanding”

for experiments

® (Generalization capabillities, particularly for
® Robustness/bias of Al models in science P P y

. L models trained on scientific data
— uncertainty, generalizabllity, etc.

These lists aren’t mutually exclusive!

Thanks for listening!
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CASE T A

Phil Harris!, Patrick McCormack!, Sang Eon Park!, Tobias Quadfasel?, Manuel
Sommerhalder?, Louis Moureaux?, Gregor Kasieczka?, Oz Amram?, Petar Maksimovic?,
Nadya Chernyavskaya®, Benedikt Maier”, Maurizio Pierini®, Kinga Wozniak>, Thea
Aarrestad®, Jennifer NgadiubaS, Irene Zoi®, Samuel Bright—Thonneyg, David Shih1%, and Aritra
Balll

IMIT
2 Universitit Hamburg
3 Johns Hopkins
4Johns Hopkins and Fermilab
5 CERN
¢ CERN and ETH Zurich
7 CERN and KIT
8 Fermilab
? Cornell
Jet 10 Rutgers
‘e 11 KIT

Jet
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CASE T A

C ASE — he C M S An om aly Se arch ( :ffO r-t) Phil Harris!, Patrick McCormack!, Sang Eon Park!, Tobias Quadfasel?, Manuel ;

Sommerhalder?, Louis Moureaux?, Gregor Kasieczka?, Oz Amram?, Petar Maksimovic?,
Nadya Chernyavskaya®, Benedikt Maier”, Maurizio Pierini®, Kinga Wozniak>, Thea

@ LOO k| N g fOr SIM al | resonant s | g natures y S| N g Aarrestad®, Jennifer Ngadiuba®, Irene Zo0i®, Samuel Bright-Thonney”, David Shih'?, and Aritra
Ball!

anomaly detection technigues I MIT

2 Universitit Hamburg
: - 3 Johns Hopkins
® Focusing on jet substructure 4Johns Flogbvnd Fermiah
5 CERN
® CERN and ETH Zurich
7 CERN and KIT
8 Fermilab
? Cornell
Jet 10 Rutgers
UKIT

Jet
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Bump hunting

Signal
Background

Machine learning
anomaly detection

i A

From Patrick McCormack’s CMS Week Plenary S'gnal
Background
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https://indico.cern.ch/event/1180058/contributions/5566641/attachments/2719679/4724792/September_22_CMS_Week_CASE.pdf

Bump hunting i A

MM
OO

AN YR

A NIARY

N v.v v‘v %
AN

“Weakly Supervised” Machine learning “Semi-Supervised”
00000 (00000 anomaly detection
OO®O®
OO®OC®

OO
| @000

dN/dMmyres

T - 3
Unsupervised 2
-
o
background \ / 212D QUAK
T gy Space 5
O
(7))
X =d(2)
0,0 Background Loss
loss = ||x-x]|]* + KL ,NO,1)1 = || x-d(2) |]? + KL ,N(©O,1)]

Other features
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Bump hunting

“Weakly Supervised”

©@@®0 |
OO0
00000

OOOO®®
| @000

dN/dMmyres

background

Other features

A\"A
W/
i
V"\V

A

)

v

=
(X

Machine learning
anomaly detection

Our focus

“Unsupervised”

T~

neural network
encoder

/

////////

neural network
decoder

T~

X =d(z)

loss = ||x-x]|]* + KL

N(O,D] = ||

'd( )“2 + KL[ IN(OI I)]

i A

“Semi-Supervised”

0
0,
@)

—

‘©
c

jo)

7))

2D QUAK
Space

0,0 Background Loss

Selection
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Selecting events i A

How should we select Naive choice: “bottom right”
events for the bump hunt?

90°

N
o
o

| 1 I I 1 I 1 l 1 ' |l | | | I 1 I ] ] 1 | I ] I 1 L

+ Bkg MC + Injected Signal

#&== Signal + Background Fit

iy

) ‘.

—A
o
o

—h
o
o

Background MC Injected signal bump
X-YY’ Signal MC
W’'-B't Signal MC

Y-HH Signal MC

Events / 100 GeV
N 5 2

—A
-
S

=
w

Ul

o

o O
o O

Sculpted background

S
o

180°

ndf = 26.68/32
D =0.733

l | 1 | 1 l | 1 |

vvvvvvvvvvvvvvvvvvvvv

N
o

[ o] I l|l lll L1l |ll I I |ll lll lll 111

NN
I

B 0 SO oo +

PR, ST e USRS RS % eSS .. sveee, e

|

Data-Fit
| |6data
NDON

S
I
l

nnnnnnnnnnnnnnnnnnnnnnnnnn

2000 3000 4000 5000 6000
Dijet invariant mass (GeV)

225° 315°

This significantly sculpts the background distribution — no good!

270°

Driven by inverse correlation between ij & bkg-like loss
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Mass decorrelation |||il-

Devised a two step approach to decorrelate each ML model’'s output from ij

Step 1: Flatten Bkg Training Sample Step 2: PCA to account for residual correlation
3
1 Inclusive
1 Flattened o s
1073 - 0 ok D “Illustration,
- 3 . actual correlation
o)) iIs much weaker
X |
m
104 —3—3
-
O
-
O
2,
107> A O
] P .
m .
2000 2500 3000 3500 4000 6 D
M; [GeV] 0.
-3

-3 —'?. —ll M ll .'7. 3
J
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Mass decorrelation T A

Decorrelation measures successfully “un-sculpt” background enough to use standard fit functions
90°

Signal Axis: X=YY’ (170, 170) GeV, mxy=3 TeV

135° 21 N\ 450

Inclusive Background
[ Selected: Default
1 Selected: M; Flattened

7 [ Selected: Mj-Flattened + PCA

- Background MC
X-=YY' Signal MC

- |N/'-B't Signal MC

= Y—-HH Signal MC

Top 5% Bkg Loss

180° o - Bottom 33% Signal Loss
2
B S
225° 3150 -.ﬁ
L_
1500 2000 2500 3000 3500 4000
M; [GeV]
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Bump hunting

i A
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Bump hunting i A

S 10U E | =
O = =
o 10°E E
— - = Background template Signal template
— 10°B =
wn - -
o 10* = =
>  F -
Lu B —
10° =
10E =
1e é m
= = H
—o b b by Ly L AN PA(1 — P
2000 3000 4000 5000 6000 . o(1 — )
M;; |GeV] dM;;  xP2tPslog(z)+Pslog*(z) “Double-sided crystal ball”
Step 4 r=M;;/\/s Gaussian core + power law tails

Fit the resulting spectrum to a background
(smoothly falling) + signal (bump) function
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A different solution: morphing UITe Fi

0.40 MC 1.0 MC
Data Data

: _ MC
“guantile morphing Input

/

Y corr 3 d_a%a(F MC(Y orig))
X\ MC

CDF

Y

Y, corr * Orig
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Fi

A different solution: morphing UiTe

0401 MC 104 MC
0.35 - Data Data
“quantile morphing” MC
/Input
N . YCOTT data(F MC( orlg) )
o 0.2 1 \ MC
' CDF
Ycorr Yorig
X X,y Xy V1
Raw 1 v 27l o Y 1:k-1
N-D p(X) = p(x))p(xy | x1) = p(x [ X.521) MC 5 o E o _
Case o . % vV \ 4 v
Fl(xl) Fz(xlz | x) Fk(X‘k | X1.% 1) Cor{:gted 1 = Fp' (Fyex) Y, = Fp' (FycCe [yp 1) Ve = Fp' (FucCi Y- ) 1Y 14-1)

1 : : : J)
Chalned quantlle morphlng Approach used in 2208.12279 using BDTs
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https://arxiv.org/pdf/2208.12279.pdf

Chained quantile morphing with flows Ilir

r X = (371,5132, IR 756/4:) ~ pMC(X)
Corrected M /\

iEl—QMC --------- > z1=gn(1) ========- > yl—QD
fimc(z1) fip(z
) A R T L L L L L LT T T
T2 = quc(og|yr) ========= > 22 = qn(an) "--1-----" y2 = qp(a2|y1)
v famc(x2]y1) fop(22ly1) .
A
Yi:k—1
¥
Tk = qumc(0k|y1:6—1) =======1 > 2 =gn(ag) =======3 > Yr = qp(k|y1:k—1)
v fremc(@k|y1k-1) f;;llg(zk|}’1:k—1) :
y].ki L R L L L L L L R |

Use flows to model the (conditional) densities
& morph between data-like & simulation-like
samples

2309.15912

3.5 BB1 ~
o 1 R&D
' [ Corrected R&D
>\25‘
e
2 2.0
o}
015
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0.5
0.0
2.0 T
ols L esseeeesetett, ’1
g 10] ogpeeetestistnetesececennnnzesssslstisssiiagy | *00000sssssasnsecesesestnitiiicooceccnnte ot
051 _.° ® i _ee® *
. §oo
0-97% 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Jetlp Jet 1 154
Lo i* ‘
e | T
| o®® Tt _e0e®®®
T * g, | teteset
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.
_let 171y Jet 1 T3

Successfully applied to LHC olympics
dataset; transformed high-level jet features

Fi
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