Collide & Compress

Building robust embedding spaces to simplify new physics searches at the LHC

February 14th, 2025

Sam Bright-Thonney IAIFI/MIT

IAIFI Colloquium

The age of foundation models

We are very much in the age of (hype about) "foundation models"

"...any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks"

The age of foundation models

We are very much in the age of (hype about) "foundation models"

"...any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks"

OpenAl Gemini Claude Cleepseek

• Mastering language is *viscerally* impressive, but LLMs completely dominate the conversation

- Mastering language is *viscerally* impressive, but LLMs completely dominate the conversation
- A "model that understands X" where X = a scientific domain can be **extremely valuable!**
 - Operating in complexity regimes where our abilities are severely limited

Article Open access Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

John Jumper [™], Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal

Zielinski, ... Demis Hassabis [™] + Show authors

Nature 596, 583–589 (2021) Cite this article

1.99m Accesses | 20k Citations | 4006 Altmetric | Metrics

Demis Hassabis

John Jumpe for protein structure predictio

- Mastering language is *viscerally* impressive, but LLMs completely dominate the conversation
- A "model that understands X" where X = a scientific domain can be **extremely valuable!**
 - Operating in complexity regimes where our abilities are severely limited

Article Open access Published: 29 November 2023

Scaling deep learning for materials discovery

Amil Merchant ^M, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon & Ekin Dogus Cubuk ⊠

Nature 624, 80–85 (2023) Cite this article

Rb, HfSi, O

Image credit: DeepMind

Sam Bright-Thonney

Article Open access Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

John Jumper [™], Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal

Zielinski, ... Demis Hassabis [™] + Show authors

Nature 596, 583-589 (2021) Cite this article

1.99m Accesses 20k Citations 4006 Altmetric Metrics

Article | Published: 16 January 2025

A generative model for inorganic materials design

<u>Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong Wang,</u> Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, Roberto Sordillo, Lixin Sun, Jake Smith, Bichlien Nguyen, Hannes Schulz, Sarah Lewis, Chin-Wei Huang, Ziheng Lu, Yichi Zhou, Han Yang, Hongxia Hao, Jielan Li, Chunlei Yang, Wenjie Li, ... <u>Tian Xie</u> → Show authors Nature (2025) Cite this article 78k Accesses | 147 Altmetric | Metrics Generation (denoising) proce Microsoft P6₃/mmc Property ↔ m = 0.15 Å⁻³

Image credit: Microsoft

IAIFI Colloquium

February 14th, 2025

lohn Jumpe or protein structure prediction

I'd like a foundation model that understands particle physics

I'd like a foundation model that understands particle physics

Asymptotic freedom in Quantum Chromodynamics (QCD) refers to the property that the strong coupling constant α_s decreases at high energy (or short distances), causing quarks and gluons to interact weakly at high energies but strongly at low energies, leading to confinement.

Technical Explanation

1. Beta Function & Running Coupling:

The behavior of the QCD coupling $\alpha_s = g_s^2/(4\pi)$ is governed by the **renormalization group equation**:

$$\mu \frac{d\alpha_s}{d\mu} = \beta(\alpha_s),$$

where the QCD beta function at one-loop is:

$$eta(lpha_s)=-rac{eta_0}{2\pi}lpha_s^2, \hspace{1em} ext{with} \hspace{1em} eta_0=11-rac{2}{3}N_f.$$

Here, N_f is the number of active quark flavors, and for $N_f \leq 16$, we get $\beta_0 > 0$, implying asymptotic freedom.

2. Energy Dependence of α_s :

Integrating the beta function gives the running coupling:

$$lpha_s(\mu)pprox rac{4\pi}{eta_0\ln(\mu^2/\Lambda_{
m QCD}^2)},$$

where $\Lambda_{
m QCD}\sim 200$ MeV is the QCD scale parameter.

- At high energy ($\mu \gg \Lambda_{\rm QCD}$), α_s decreases, meaning quarks behave as free particles (asymptotic freedom).
- At low energy ($^{\mu} \sim \Lambda_{\text{QCD}}$), α_s increases, leading to quark confinement into hadrons.

give me a concise but technical explanation of asymptotic freedom in QCD

IAIFI Colloquium

thanks for listening!

Sam Bright-Thonney

IAIFI Colloquium

I'd like a foundation model that understands particle physics data!

Experimental data (hundreds/thousands of channels)

Sam Bright-Thonney

I'd like a foundation model that understands particle physics data!

I'd like a foundation model that understands particle physics **data!**

Experimental data (hundreds/thousands of channels)

Foundation model

*experiment-specific

Sam Bright-Thonney

IAIFI Colloquium

I'd like a foundation model that understands particle physics **data!**

Experimental data (hundreds/thousands of channels)

Foundation model

*experiment-specific

Sam Bright-Thonney

IAIFI Colloquium

Self-supervised training, understands the "structure of the data"

- Identify underlying physics (Higgs, top
 - quark, ...)
 - **Tagging interesting objects**
 - **Regression (e.g. particle energy)**
 - **Anomaly detection (new physics)**
 - Analysis automation

Downstream tasks

If LLMs can write, code, and "reason", can they also do my job?

Image credit: CERN

 $H \rightarrow \gamma \gamma$

IAIFI Colloquium

February 14th, 2025

If LLMs can write, code, and "reason", can they also do my job?

Image credit: CERN

 $H \rightarrow \gamma \gamma$

what is going on in this picture

This is an event display from the CMS Experiment at the Large Hadron Collider (LHC). Such displays visualize the data collected from particle collisions inside the detector, showing the trajectories of particles and energy deposits as they are reconstructed.

Key Features of the Image:

- 1. Collision Point (Interaction Vertex):
- The orange lines emanating from the center represent the tracks of charged particles produced in the collision. The point where these lines originate is the interaction vertex, where two protons collided.
- 2. Yellow Dashed Line:
- Indicates the possible trajectory or momentum imbalance associated with particles not directly detected (e.g., neutrinos or missing) transverse energy).
- 3. Green and Orange Rectangles:
- These are energy deposits in the calorimeters:
- Orange regions represent energy deposited by particles in the electromagnetic calorimeter (ECAL), typically photons or electrons.
- Green regions represent energy deposited in the hadronic calorimeter (HCAL), typically from hadrons like protons, neutrons, or pions.
- 4. Blue Cylinder:
- Represents the CMS detector geometry, showing the surrounding tracking systems and calorimeters that measure particles' momenta and energy.
- 5. Long Green Lines:
- Likely represent muons, which penetrate the entire detector and are reconstructed in the outermost layers of the CMS muon chambers.
- 6. Purpose of the Event:
- This display could represent a candidate event for a Higgs boson decay or other interesting physics processes, such as electroweak interactions or rare decays. The clean central vertex and extensive particle activity suggest it is a high-energy event.

Would you like more detailed information about a specific component or the physics process being studied?

IAIFI Colloquium

If LLMs can write, code, and "reason", can they also do my job?

Image credit: CERN

 $H \rightarrow \gamma \gamma$

what is going on in this picture

This is an event display from the CMS Experiment at the Large Hadron Collider (LHC). Such displays visualize the data collected from particle collisions inside the detector, showing the trajectories of particles and energy deposits as they are reconstructed.

Key Features of the Image:

- 1. Collision Point (Interaction Vertex):
- The orange lines emanating from the center represent the tracks of charged particles produced in the collision. The point where these lines originate is the interaction vertex, where two protons collided.
- 2. Yellow Dashed Line:
- Indicates the possible trajectory or momentum imbalance associated with particles not directly detected (e.g., neutrinos or missing) transverse energy).
- 3. Green and Orange Rectangles:
- These are energy deposits in the calorimeters:
- Orange regions represent energy deposited by particles in the electromagnetic calorimeter (ECAL), typically photons or electrons.
- Green regions represent energy deposited in the hadronic calorimeter (HCAL), typically from hadrons like protons, neutrons, or pions.
- 4. Blue Cylinder:
- Represents the CMS detector geometry, showing the surrounding tracking systems and calorimeters that measure particles' momenta. and energy.
- 5. Long Green Lines:
- Likely represent muons, which penetrate the entire detector and are reconstructed in the outermost layers of the CMS muon chambers.

6. Purpose of the Event:

• This display could represent a candidate event for a Higgs boson decay or other interesting physics processes, such as electroweak interactions or rare decays. The clean central vertex and extensive particle activity suggest it is a high-energy event.

Would you like more detailed information about a specific component or the physics process being studied?

IAIFI Colloquium

If LLMs can write, code, and "reason", can they also do my job?

Image credit: CERN

 $H \rightarrow \gamma \gamma$

what is going on in this picture

This is an event display from the CMS Experiment at the Large Hadron Collider (LHC). Such displays visualize the data collected from particle collisions inside the detector, showing the trajectories of particles and energy deposits as they are reconstructed.

Key Features of the Image:

- 1. Collision Point (Interaction Vertex):
- The orange lines emanating from the center represent the tracks of charged particles produced in the collision. The point where these lines originate is the interaction vertex, where two protons collided.
- 2. Yellow Dashed Line:
 - Indicates the possible trajectory or momentum imbalance associated with particles not directly detected (e.g., neutrinos or missing) transverse energy)
- 3. Green and Orange Rectangles:
- These are energy deposits in the calorimeters:
- Orange regions represent energy deposited by particles in the electromagnetic calorimeter (ECAL), typically photons or electrons.
- Green regions represent energy deposited in the hadronic calorimeter (HCAL), typically from hadrons like protons, neutrons, or pions.
- 4. Blue Cylinder:
- Represents the CMS detector geometry, showing the surrounding tracking systems and calorimeters that measure particles' momenta. and energy.
- 5. Long Green Lines:
- Likely represent muons, which penetrate the entire detector and are reconstructed in the outermost layers of the CMS muon chambers.
- 6. Purpose of the Event:
- This display could represent a candidate event for a Higgs boson decay or other interesting physics processes, such as electroweak interactions or rare decays. The clean central vertex and extensive particle activity suggest it is a high-energy event.

Would you like more detailed information about a specific component or the physics process being studied?

IAIFI Colloquium

Image credit: CERN

 $H \rightarrow \gamma \gamma$

tell me about the physics process occurring here

This event display from the CMS experiment at the LHC likely represents a high-energy proton-proton collision. The physics process occurring here could involve a Standard Model process, such as Higgs boson production, electroweak interactions, or QCD jets, depending on the details of the event. Let me walk you through the possibilities based on the visible features:

Possible Physics Processes

1. Higgs Boson Candidate Event

 The display shows a high-energy collision producing many particles. It could correspond to a Higgs boson decay, where the Higgs is produced and decays into detectable particles.

Potential Higgs decay channels:

- H → γγ (two photons):
- If two large, isolated energy deposits in the electromagnetic calorimeter (orange) are visible, this could signify photons from a Higgs decay.
- $H \rightarrow ZZ \rightarrow 4$ leptons:
- Tracks corresponding to muons (long green lines) or electrons might indicate this channel, a "golden channel" for Higgs observation due to its clean signature.
- H → WW → leptons and neutrinos:
- Missing transverse energy (indicated by the yellow dashed line) suggests escaping neutrinos, a hallmark of this channel.

2. Jets and QCD Processes

- The dense spray of orange and green rectangles near the interaction vertex suggests the presence of jets, which are collimated showers of particles originating from quark or gluon fragmentation.
- This could be a hard scattering process, such as:
- · QCD dijet production (dominant at the LHC).
- Top quark pair production (t-tbar):
- If the event involves jets and missing energy, it could signify top quark decays into W bosons and jets.

3. Missing Transverse Energy and New Physics

- The yellow dashed line (missing transverse energy) indicates an imbalance in momentum in the transverse plane. This often occurs when particles like **neutrinos** escape the detector.
- Missing energy could also hint at **new physics** processes, such as:
- Supersymmetry (SUSY):
- Lightest supersymmetric particles (LSPs) can escape detection, leading to large missing transverse energy.
- Dark Matter production:
- Hypothetical dark matter particles produced in the collision would not interact with the detector, causing a momentum imbalance.

 \downarrow

4. Electroweak Processes

- The event could also involve weak bosons (W^{\pm} or Z^{0}), which often produce leptons (e.g., muons or electrons) and neutrinos:
- W → Iv (lepton and neutrino decay).

Sam Bright-Thonney

tell me about the physics process occurring here

This event display from the CMS experiment at the LHC likely represents a high-energy proton-proton collision. The physics process occurring here could involve a Standard Model process, such as Higgs boson production, electroweak interactions, or QCD jets, depending on the details of the event. Let me walk you through the possibilities based on the visible features:

How to Identify the Process

To determine the exact physics process:

- 1. Track and Vertex Analysis:
- Examine whether the tracks correspond to charged leptons (e.g., muons or electrons) or jets.
- Look for high-energy isolated objects (e.g., photons or leptons).

2. Calorimeter Energy Deposits:

- The patterns of green (hadronic) and orange (electromagnetic) deposits reveal whether the event is jet-dominated (QCD) or includes isolated photons/electrons (Higgs or electroweak processes).
- 3. Missing Energy:
- The presence of a missing transverse energy vector (yellow dashed line) often signifies neutrinos or potential new particles.
- 4. Monte Carlo Simulation:
- CMS physicists compare such events to simulations of known physics processes to classify them.

Most Likely Interpretation

Given the structure of this event:

- If it features isolated high-energy photons or leptons, it might be a Higgs boson candidate
- If it involves large sprays of particles (jets) and missing energy, it could be top quark production or a search for new physics.
- If jets dominate with no missing energy, it is likely a QCD dijet process.

Would you like more specific guidance on identifying key features or understanding the event reconstruction process?

IAIFI Colloquium

Image credit: CERN

 $H \rightarrow \gamma \gamma$

tell me your best guess about the specific process occurring (a single answer)

My best guess is that this event represents Higgs boson production with decay into two W bosons, followed by $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ (where ℓ represents leptons, and ν are neutrinos).

Why this process?

- Yellow dashed line (missing transverse energy): Suggests escaping neutrinos, characteristic of $W \rightarrow \ell \nu$ decays.
- Spray of particles near the vertex (jets): Consistent with activity from initial proton-proton collision and decay products.
- Presence of long green tracks (muons): Likely indicates leptonic decays of the W-bosons.

This process is a prominent channel used to study the Higgs boson because of its relatively clean leptonic signature combined with missing energy.

Not even close!

Clearly there is some work to be done...

But what do we mean by "foundation model"?

IAIFI Colloquium

Particle physics data is *really different* than

language!

Particle physics data is *really different* than

language!

- Very high-dimensional, not tokenized, almost no "meaning" by itself
- Unordered

Particle physics data is *really different* than

language!

- Very high-dimensional, not tokenized, almost no "meaning" by itself
- Unordered
- Interpretation is *statistical* (no N = 1 discovery)
- Highly context-dependent (detector, reco)

IAIFI Colloquium

February 14th, 2025

Particle physics data is *really different* than language!

- Very high-dimensional, not tokenized, almost no "meaning" by itself
- Unordered
- Interpretation is *statistical* (no N = 1 discovery)
- Highly context-dependent (detector, reco)
- Defined at many different scales

February 14th, 2025

IAIFI Colloquium

Particle physics data is *really different* than language!

- Very high-dimensional, not tokenized, almost no "meaning" by itself
- Unordered
- Interpretation is *statistical* (no N = 1 discovery)
- Highly context-dependent (detector, reco)
- Defined at many different scales
- Generative models (e.g. GPT) are rarely

necessary

What kind of "foundation model" approach is suited to this data?

February 14th, 2025

IAIFI Colloquium

The "space" view

- dimensional data into a low-dimensional, physically meaningful embedding

• A "universal pre-processing step" for collider data — everything else can be fine-tuned downstream

• Possibility to inject inductive biases (e.g. preserving physical metrics, accounting for systematics, etc)

• An LHC physics primer

• An LHC physics primer

• Progress towards useful "spaces" for HEP

• An LHC physics primer

- Progress towards useful "spaces" for HEP
 - Semi-supervised spaces for anomaly detection

- An LHC physics primer
- Progress towards useful "spaces" for HEP
 - Semi-supervised spaces for anomaly detection
 - Self-supervised contrastive spaces for anomaly detection & more (FM-style)
 - Correcting simulation bias

Background MC $\rightarrow YY'$ Signal MC $\rightarrow B't$ Signal MC

 $Y \rightarrow HH$ Signal MC

200 300 400 Number of injected signal events

IAIFI Colloquium

nension

Ō SNE

- An LHC physics primer
- Progress towards useful "spaces" for HEP
 - Semi-supervised spaces for anomaly detection
 - Self-supervised contrastive spaces for anomaly detection & more (FM-style)
 - Correcting simulation bias
- Ongoing/future work & outlook

Background MC $\rightarrow YY'$ Signal MC $\rightarrow B't$ Signal MC

 $Y \rightarrow HH$ Signal MC

200 300 400 Number of injected signal events

IAIFI Colloquium

Ō

Some LHC physics basics

Sam Bright-Thonney

IAIFI Colloquium

World's largest particle collider — **27 km circumference**

Sam Bright-Thonney

mass energy of 13 TeV

The experiments

IAIFI Colloquium

February 14th, 2025

The experiments

SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A

Microstrips ($80x180 \mu m$) ~ $200m^2$ ~9.6M channels

MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

Overall length : 28.7 m Magnetic field : 3.8 T

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

February 14th, 2025

IAIFI Colloquium

The experiments

Sam Bright-Thonney

SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A

Microstrips ($80x180 \mu m$) ~ $200m^2$ ~9.6M channels

MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

Overall length : 28.7 m Magnetic field : 3.8 T

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

February 14th, 2025

IAIFI Colloquium

Interpreting the data

What we care about (and can calculate)

Al tools are deeply embedded in LHC analysis ecosystem

What we can *measure*

Machine learning is *extremely* well-suited to tackling HEP problems!

IAIFI Colloquium

February 14th, 2025

Where Al comes in

LHC physics workflow

Collide

40 MHz Overwhelming data rate!

Trigger

Select only the "interesting" events to save. Fast, on-chip data reconstruction & inference

Emerging AI frontier

Sam Bright-Thonney

Analyze

Reconstruct data, make SM measurements, search for new physics

Al is everywhere ...

- Signal vs background discrimination
- **Taggers** (e.g. Higgs)
- **Anomaly detection** (new physics)

Huge, rapidly evolving field!

Hep ML Living review (~1.4k papers & counting)

February 14th, 2025

IAIFI Colloquium

Where Al comes in

LHC physics workflow

Collide

40 MHz Overwhelming data rate!

Select only the "interesting" events to save. Fast, on-chip data reconstruction & inference

Emerging AI frontier

Sam Bright-Thonney

Trigger

This talk

Analyze

Reconstruct data, make SM measurements, search for new physics

Al is everywhere ...

- Signal vs background discrimination
- **Taggers** (e.g. Higgs)
- Anomaly detection (new physics)

Huge, rapidly evolving field!

Hep ML Living review (~1.4k papers & counting)

February 14th, 2025

IAIFI Colloquium

Image credit: E. Metodiev

Sam Bright-Thonney

• We can never observe "bare" quarks/gluons due to a QCD phenomenon called **color**

confinement

Image credit: E. Metodiev

Sam Bright-Thonney

• We can never observe "bare" quarks/gluons due to a QCD phenomenon called **color**

confinement

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

• We can never observe "bare" quarks/gluons due to a QCD phenomenon called **color**

confinement

Sam Bright-Thonney

Fragmentation partons **gud** ...

Hadronization hadrons $\pi^{\pm}K^{\pm}$...

IAIFI Colloquium

February 14th, 2025

• We can never observe "bare" quarks/gluons due to a QCD phenomenon called **color**

confinement

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

- We can never observe "bare" quarks/gluons due to a QCD phenomenon called **color**
- We detect *composite* objects called **jets** as a proxy for the underlying q/g

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

- We can never observe "bare" quarks/gluons due to a QCD phenomenon called **color** confinement
- We detect *composite* objects called **jets** as a proxy for the underlying q/g
- Jet **substructure** can tell us about the initiating particle

Collision

Sam Bright-Thonney

|p|

IAIFI Colloquium

Semi-supervised **spaces**

Building a space "by hand" for anomaly detection

Sam Bright-Thonney

IAIFI Colloquium

Some motivation

After ~15 years of LHC physics, no clear experimental target for new physics

"Theory Space"

We should make our searches as broad as possible — model agnostic

Sam Bright-Thonney

An ideal CMS search

IAIFI Colloquium

How an embedding might help

Sam Bright-Thonney

Why would an embedding be helpful for these searches?

1. Anomaly detection in high-dim datasets is **fundamentally hard**: difficult to model, more "tails", sparse

2. Partially alleviate "performance tradeoff" btwn low-level particle info & hand-constructed observables?

3. Interpretation *might* be easier, depending on how interpretable you can make your space

- What's the most generic thing we can look for?
 - A new particle (anything)

IAIFI Colloquium

February 14th, 2025

- What's the most generic thing we can look for?
 - ► A **new particle** (anything)
- What **physical signature**?
 - Two-body decay, i.e. a **resonance**
 - Assume only hadronic decays (jets)

IAIFI Colloquium

- What's the most generic thing we can look for?
 - ► A **new particle** (anything)
- What **physical signature**?
 - Two-body decay, i.e. a **resonance**
 - Assume only hadronic decays (jets)
- We call this a "dijet resonance" performing a bump hunt

- What's the most generic thing we can look for?
 - ► A **new particle** (anything)
- What **physical signature**?
 - Two-body decay, i.e. a **resonance**
 - Assume only hadronic decays (jets)
- We call this a "dijet resonance" performing a bump hunt
 - ► Easier said than done **QCD** (boring stuff) is a huge background

IAIFI Colloquium

SM-like unsupervised loss

IAIFI Colloquium

- Imagine you train an unsupervised model on SM backgrounds
 - ► The "high loss" region is where we expect signal potentially very sensitive!

SM-like unsupervised loss

IAIFI Colloquium

- Imagine you train an unsupervised model on SM backgrounds
 - ► The "high loss" region is where we expect signal potentially very sensitive!
 - But in reality, tails are populated by all kinds of *uninteresting* anomalies

SM-like unsupervised loss

IAIFI Colloquium

February 14th, 2025

Rare SM?

- Imagine you train an unsupervised model on SM backgrounds
 - ▶ The "high loss" region is where we expect signal potentially very sensitive!
 - But in reality, tails are populated by all kinds of *uninteresting* anomalies
- **Semi-supervised** : We "know" what new physics could/ would look like
 - Add a new "signal-like" axis or axes trained on benchmark BSM signals

SM-like unsupervised loss

IAIFI Colloquium

February 14th, 2025

Rare SM?

- Imagine you train an unsupervised model on SM backgrounds
 - ► The "high loss" region is where we expect signal potentially very sensitive!
 - But in reality, tails are populated by all kinds of *uninteresting* anomalies
- Semi-supervised : We "know" what new physics could/ would look like
 - Add a new "signal-like" axis or axes trained on benchmark BSM signals
 - Provides a "physics prior" include wide enough set of priors to enable "interpolation"

SM-like unsupervised loss

IAIFI Colloquium

- Imagine you train an unsupervised model on SM backgrounds
 - ► The "high loss" region is where we expect signal potentially very sensitive!
 - But in reality, tails are populated by all kinds of *uninteresting* anomalies
- Semi-supervised : We "know" what new physics could/ would look like
 - Add a new "signal-like" axis or axes trained on benchmark BSM signals
 - Provides a "physics prior" include wide enough set of priors to enable "interpolation"

SM-like unsupervised loss

IAIFI Colloquium

- Imagine you train an unsupervised model on SM backgrounds
 - ► The "high loss" region is where we expect signal potentially very sensitive!
 - But in reality, tails are populated by all kinds of *uninteresting* anomalies
- **Semi-supervised** : We "know" what new physics could/ would look like
 - Add a new "signal-like" axis or axes trained on benchmark BSM signals
 - Provides a "physics prior" include wide enough set of priors to enable "interpolation"

SM-like unsupervised loss

IAIFI Colloquium

Semi-supervised searches with QUAK Imagine you train an unsupervised model on SM **Anomalous features**

- backgrounds
 - ▶ The "high loss" region is where we expect signal potentially very sensitive!
 - But in reality, tails are populated by all kinds of *uninteresting* anomalies
- Semi-supervised : We "know" what new physics could/ would look like
 - Add a new "signal-like" axis or axes trained on benchmark BSM signals
 - Provides a "physics prior" include wide enough set of priors to enable "interpolation"
- "Quasi Anomalous Knowledge" technique QUAK!

IAIFI Colloquium

• Relevant physical parameters:

- 1. m_A should be as agnostic as possible about this!
- 2. m_B, m_C also agnostic, but "aware" that they are resonant & much lighter than A

• Relevant physical parameters:

- 1. m_A should be as agnostic as possible about this!
- 2. m_B, m_C also agnostic, but "aware" that they are resonant & much lighter than A
- B & C decay chains "substructure topology" of an 3. event; should be sensitive to many possibilities!

IAIFI Colloquium

February 14th, 2025

Jet

• Relevant physical parameters:

- 1. m_A should be as agnostic as possible about this!
- 2. m_B, m_C also agnostic, but "aware" that they are resonant & much lighter than A
- B & C decay chains "substructure topology" of an З. event; should be sensitive to many possibilities!

Sample	Prongs	B and C mass points (G
$G \rightarrow gg$	1+1	-
$Q^* ightarrow qW'$	1+2	$\mathbf{M}_{W'} = 25, 80, 170, 400$
$X \to YY', \ Y/Y' \to q\bar{q}$	2+2	$\mathbf{M}_{Y/Y'} = 25, 80, 170, 40$
$W_{KK} \to WR, \ R \to WW$	2+4	$M_R = 170,400$
$W' \to B't, \ B' \to bZ$	3+3	$\mathbf{M}_{B'}=25, 80, 170, 400$
$Z' \to T'T', \ T' \to tZ$	5+5	$\mathbf{M}_{T'} = 400$
$Y \to HH, \ H \to tt$	6+6	$\mathbf{M}_H = 400$

IAIFI Colloquium

February 14th, 2025

Jet

Training the axes

Sam Bright-Thonney

Training the axes

- QUAK space axes implemented with **normalizing flows**
 - Density estimation models (unsupervised)

Sam Bright-Thonney

Training the axes

- QUAK space axes implemented with **normalizing flows**
 - Density estimation models (unsupervised)
 - Evaluate $-\log p(\mathbf{x})$ for each event signal/bkg-

like losses

Sam Bright-Thonney

- QUAK space axes implemented with **normalizing flows**
 - Density estimation models (unsupervised)
 - Evaluate $-\log p(\mathbf{x})$ for each event signal/bkg-

like losses

- QUAK space axes implemented with **normalizing flows**
 - Density estimation models (unsupervised)
 - Evaluate $-\log p(\mathbf{x})$ for each event signal/bkg-

like losses

Sam Bright-Thonney

- QUAK space axes implemented with **normalizing flows**
 - Density estimation models (unsupervised)
 - Evaluate $-\log p(\mathbf{x})$ for each event signal/bkg-

like losses

- QUAK space axes implemented with **normalizing flows**

Sam Bright-Thonney

IAIFI Colloquium

- QUAK space axes implemented with **normalizing flows**

Sam Bright-Thonney

To search for a resonance with mass m_H , we need a consistent & unbiased procedure for selecting anomalous events

To search for a resonance with mass m_H , we need a consistent & unbiased procedure for selecting anomalous events

Step 1 Define a signal region and sideband around m_H — SB should be bkgdominated

Sam Bright-Thonney

To search for a resonance with mass m_H , we need a consistent & unbiased procedure for selecting anomalous events

Step 1 Define a signal region and sideband around m_H – SB should be bkgdominated

Step 2 Sideband events define a **template** in QUAK space; sparsest bins define a **selection contour** for anomalous events

Sam Bright-Thonney

IAIFI Colloquium

To search for a resonance with mass m_H , we need a consistent & unbiased procedure for selecting anomalous events

Step 1 Define a signal region and sideband around m_H – SB should be bkgdominated

Sideband events define a **template** in QUAK space; sparsest bins define a **selection contour** for anomalous events

Sam Bright-Thonney

Step 2

Select events based on contour & construct dijet mass spectrum Run a fit to look for a bump

IAIFI Colloquium

February 14th, 2025

Step 3

Results

We repeat this procedure on real data for m_H between 1.8 and 6 TeV, and find...

IAIFI Colloquium

February 14th, 2025

Results

We repeat this procedure on real data for m_H between 1.8 and 6 TeV, and find...

IAIFI Colloquium

February 14th, 2025

Results

We repeat this procedure on real data for m_H between 1.8 and 6 TeV, and find...

IAIFI Colloquium

February 14th, 2025

Sensitivity to new signals

No new physics in the data, but *more importantly* we can demonstrate our sensitivity to potential signals with injections

Sensitivity to new signals

No new physics in the data, but *more importantly* we can demonstrate our sensitivity to potential signals with injections

IAIFI Colloquium

Limits

First collider limits for nearly all of these benchmark signals! All with a single analysis framework

IAIFI Colloquium

Self-supervised **spaces**

Built "by the machine"

IAIFI Colloquium

Self-supervised approach

QUAK-style

- Axes defined by *our choice* of priors
- Space is *interpretable* but is it *optimal*?

???

FM-style

• Axes are *learned* via self-supervision

Not interpretable, but perhaps the model

can learn/encode very sophisticated things

IAIFI Colloquium

Anomaly detection

???

Our space no longer has human-interpretable structure - how do we do anomaly detection?

Anomaly detection

Answer: statistical method driven by ML

IAIFI Colloquium

• Want to build this space in a **self-supervised** manner we opt for **contrastive learning**

- Want to build this space in a **self-supervised** manner we opt for **contrastive learning**
- Fundamentally based on **data augmentations**
 - For an input x, create an "augmented" version x' and teach a neural network to treat x and x' in the same way

IAIFI Colloquium

- Want to build this space in a **self-supervised** manner we opt for **contrastive learning**
- Fundamentally based on **data augmentations**
 - For an input x, create an "augmented" version x' and teach a neural network to treat x and x' in the same way
 - All other data points are negative samples and should be pushed apart

(Supervised) SimCLR

$$\ell_{i,j} = -\log rac{\exp(\mathrm{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/ au)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k
eq i]} \exp(\mathrm{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/ au)}$$

<u>2002.05709</u>

IAIFI Colloquium

(Supervised) SimCLR

- SimCLR is a popular contrastive learning setup
 - Cosine similarity $\hat{\mathbf{z}}_i \cdot \hat{\mathbf{z}}_j$ measures alignment
- But what augmentations are "best" for particle physics?
 - ▶ Boosts? Rotations? Energy smearing? ...

2002.05709

IAIFI Colloquium

(Supervised) SimCLR

- SimCLR is a popular contrastive learning setup
 - Cosine similarity $\hat{\mathbf{z}}_i \cdot \hat{\mathbf{z}}_j$ measures alignment
- But what augmentations are "best" for particle physics?
 - ▶ Boosts? Rotations? Energy smearing? ...
- We do have an **abundance of labeled data** from simulations
 - Motivates a supervised approach positive pair are drawn from the same *class* of objects

$$\mathsf{rs} \quad \mathcal{L}_{out}^{sup} = \sum_{i \in I} \mathcal{L}_{out,i}^{sup} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_p\right)}{\sum_{a \in A(i)} \exp\left(\mathbf{z}_i\right)}$$

2004.11362

Training on jets

IAIFI Colloquium

The learned space

IAIFI Colloquium

February 14th, 2025

The learned space

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

0.4

The learned space

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

0.4

"Discovering" the Higgs

Can we use this space to "discover" $H \rightarrow b\bar{b}$?

- Create "reference" datasets using a combination of QCD, W, Z, and top quark backgrounds
- Inject increasing numbers of $H \rightarrow b\bar{b}$ jets into "test" datasets with the same composition as the reference

Sam Bright-Thonney

IAIFI Colloquium

February 14th, 2025

"Discovering" the Higgs

Can we use this space to "discover" $H \rightarrow b\bar{b}$?

- Create "reference" datasets using a combination of QCD, W, Z, and top quark backgrounds
- Inject increasing numbers of $H \rightarrow b\bar{b}$ jets into "test" datasets with the same composition as the reference

Sam Bright-Thonney

600		

How does this measure up?

Anomaly detection w/ contrastive space

Assuming $Z \propto$ lumi, we'd expect 4σ at 0.0056% signal-to-bkg for CMS Run 2 luminosity

One contrastive training + NPLM

NB: these two setups are only very approximately comparable!

Dedicated CMS search

Observed $H \rightarrow b\bar{b}$ in ggF + VBF at 4σ on CMS Run 2 dataset, estimated 0.0053% signal-to-bkg

Dedicated search: hand-tuned selection, ggF/VBF categorization, dedicated jet tagger, etc.

Robustness

Simulations are not to be trusted

IAIFI Colloquium

A problematic possibility

A problematic possibility

- Easiest to train an embedding on simulation what

if our simulations are wrong?

- Even subtle/small systematic differences can have an impact
- Needs to be accounted for; might reduce the sensitivity of downstream tasks (e.g. NPLM)

A problematic possibility

- Easiest to train an embedding on simulation what

if our simulations are wrong?

- Even subtle/small systematic differences can have an impact
- Needs to be accounted for; might reduce the sensitivity of downstream tasks (e.g. NPLM)
- One option is **reweighting** simulation
 - $w(\mathbf{x}) = p_D(\mathbf{x})/p_{sim}(\mathbf{x})$
 - Works well enough, but cannot account for discrepancies in the tail!

Morphing a contrastive space

Contrastive space trained on "MC" treats "data" differently — discrepancies in learned space

Sam Bright-Thonney

Morphing a contrastive space

Contrastive space trained on "MC" treats "data" differently — discrepancies in learned space

Sam Bright-Thonney

Morphing a contrastive space

Contrastive space trained on "MC" treats "data" differently — discrepancies in learned space

Sam Bright-Thonney

	Classifier	Sample	AUC
	ParticleNet Tagger	R&D	0.954
		BB1	0.931
	ParticleNet Latent Tagger	R&D	0.952
		BB1	0.928
		Morphed R&D	0.928
	High-Level Tagger	R&D	0.910
		BB1	0.872
		Morphed R&D	0.873

IAIFI Colloquium

February 14th, 2025

The future

Where do we go from here?

IAIFI Colloquium

IAIFI Colloquium

Some future directions

A few things we're hoping to pursue

- Develop "supervised" contrastive embedding into full-scale demonstration for a realistic LHC search/measurement
- 2. Learn embeddings for a "Level 1 foundation **model**" — isolate anomalies & rare SM in real time!
- Contrastive space for GWAK v2 at LIGO online З. anomaly detection & more

IAIFI Colloquium

Noisy, high-dim, complex physics inputs

Self-organized, physically meaningful, and expressive latent features

Any analysis we want,

faster & easier

A new workflow for HEP

Representation learning Self-supervised learning **Foundation models** Physics-informed architectures

Noisy, high-dim, complex physics inputs

Physics-aware training?

Interpretable ML?

2403.07066

Lots of room for new ideas!

Sam Bright-Thonney

BSM physics searches

Self-organized, physically meaningful, and expressive latent features

Any analysis we want,

faster & easier

Talk to me about...

Physics things

- **Representation learning** for collider
 - physics and/or LIGO
- Training/deploying "Foundation models" for experiments
- **Robustness/bias** of AI models in science
 - uncertainty, generalizability, etc.

Thanks for listening!

AI things

- Fundamental questions of the "how does" this work" variety (toy models, etc.)
- Self-supervised learning; how training objective shapes a model's "understanding"
- Generalization capabilities, particularly for models trained on scientific data
- These lists aren't mutually exclusive!

Backup

IAIFI Colloquium

CASE

Phil Harris¹, Patrick McCormack¹, Sang Eon Park¹, Tobias Quadfasel², Manuel Sommerhalder², Louis Moureaux², Gregor Kasieczka², Oz Amram⁴, Petar Maksimovic³, Nadya Chernyavskaya⁵, Benedikt Maier⁷, Maurizio Pierini⁵, Kinga Wozniak⁵, Thea Aarrestad⁶, Jennifer Ngadiuba⁸, Irene Zoi⁸, Samuel Bright-Thonney⁹, David Shih¹⁰, and Aritra Bal¹¹

 1 MIT ² Universität Hamburg ³ Johns Hopkins ⁴ Johns Hopkins and Fermilab ⁵CERN ⁶CERN and ETH Zurich ⁷ CERN and KIT ⁸ Fermilab ⁹Cornell ¹⁰ Rutgers ¹¹ KIT

CASE

CASE = The **C**MS **A**nomaly **Se**arch (Effort)

- Looking for small resonant signatures using anomaly detection techniques
- Focusing on jet substructure

Phil Harris¹, Patrick McCormack¹, Sang Eon Park¹, Tobias Quadfasel², Manuel Sommerhalder², Louis Moureaux², Gregor Kasieczka², Oz Amram⁴, Petar Maksimovic³, Nadya Chernyavskaya⁵, Benedikt Maier⁷, Maurizio Pierini⁵, Kinga Wozniak⁵, Thea Aarrestad⁶, Jennifer Ngadiuba⁸, Irene Zoi⁸, Samuel Bright-Thonney⁹, David Shih¹⁰, and Aritra Bal¹¹

Bump hunting

Sam Bright-Thonney

IAIFI Colloquium

Sam Bright-Thonney

Selecting events

Naive choice: "bottom right" > 200 ⊕ 180 180 **Bkg MC + Injected Signal** 100 160 Signal + Background Fit 140 Events **Injected signal bump** 120 100 80 60 Sculpted background 40 Chi2/ndf = 26.68/32 = 0 20 Prob = 0.7335000 6000 2000 4000 3000 Dijet invariant mass (GeV)

This significantly sculpts the background distribution — no good! Driven by inverse correlation between M_{ii} & bkg-like loss

IAIFI Colloquium

Mass decorrelation

Devised a **two step approach** to decorrelate each ML model's output from M_{ii}

Step 1: Flatten Bkg Training Sample

Step 2: PCA to account for residual correlation

IAIFI Colloquium

Mass decorrelation

Bump hunting

Bump hunting

Step 4

Fit the resulting spectrum to a background (smoothly falling) + signal (bump) function

A different solution: morphing

MC Input

A different solution: morphing

N-D
$$p(\mathbf{x}) = p(x_1)p(x_2 | x_1) \cdots p(x_k | \mathbf{x}_{1:k-1})$$
 M
Case $F_1(x_1) = F_2(x_2 | x_1) = F_k(x_k | \mathbf{x}_{1:k-1})$ M

"Chained quantile morphing"

Approach used in <u>2208.12279</u> using BDTs

IAIFI Colloquium

February 14th, 2025

MC Input

Use **flows** to model the (conditional) densities & morph between data-like & simulation-like samples

Successfully applied to LHC olympics dataset; transformed high-level jet features

